日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (另解:由題意可得得.故只有上述第一種情況符合條件.) 查看更多

           

          題目列表(包括答案和解析)

          如圖,邊長(zhǎng)為2的正方形ABCD,E是BC的中點(diǎn),沿AE,DE將折起,使得B與C重合于O.

          (Ⅰ)設(shè)Q為AE的中點(diǎn),證明:QDAO;

          (Ⅱ)求二面角O—AE—D的余弦值.

          【解析】第一問(wèn)中,利用線線垂直,得到線面垂直,然后利用性質(zhì)定理得到線線垂直。取AO中點(diǎn)M,連接MQ,DM,由題意可得:AOEO, DOEO,

          AO=DO=2.AODM

          因?yàn)镼為AE的中點(diǎn),所以MQ//E0,MQAO

          AO平面DMQ,AODQ

          第二問(wèn)中,作MNAE,垂足為N,連接DN

          因?yàn)锳OEO, DOEO,EO平面AOD,所以EODM

          ,因?yàn)锳ODM ,DM平面AOE

          因?yàn)镸NAE,DNAE, DNM就是所求的DM=,MN=,DN=,COSDNM=

          (1)取AO中點(diǎn)M,連接MQ,DM,由題意可得:AOEO, DOEO,

          AO=DO=2.AODM

          因?yàn)镼為AE的中點(diǎn),所以MQ//E0,MQAO

          AO平面DMQ,AODQ

          (2)作MNAE,垂足為N,連接DN

          因?yàn)锳OEO, DOEO,EO平面AOD,所以EODM

          ,因?yàn)锳ODM ,DM平面AOE

          因?yàn)镸NAE,DNAE, DNM就是所求的DM=,MN=,DN=,COSDNM=

          二面角O-AE-D的平面角的余弦值為

           

          查看答案和解析>>

          中,,分別是角所對(duì)邊的長(zhǎng),,且

          (1)求的面積;

          (2)若,求角C.

          【解析】第一問(wèn)中,由又∵的面積為

          第二問(wèn)中,∵a =7  ∴c=5由余弦定理得:得到b的值,然后又由余弦定理得:         

          又C為內(nèi)角      ∴

          解:(1) ………………2分

             又∵                   ……………………4分

               ∴的面積為           ……………………6分

          (2)∵a =7  ∴c=5                                  ……………………7分

           由余弦定理得:      

              ∴                                     ……………………9分

          又由余弦定理得:         

          又C為內(nèi)角      ∴                           ……………………12分

          另解:由正弦定理得:  ∴ 又  ∴

           

          查看答案和解析>>

          如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.

          (Ⅰ)證明PC⊥AD;

          (Ⅱ)求二面角A-PC-D的正弦值;

          (Ⅲ)設(shè)E為棱PA上的點(diǎn),滿足異面直線BE與CD所成的角為30°,求AE的長(zhǎng).

           

          【解析】解法一:如圖,以點(diǎn)A為原點(diǎn)建立空間直角坐標(biāo)系,依題意得A(0,0,0),D(2,0,0),C(0,1,0), ,P(0,0,2).

          (1)證明:易得,于是,所以

          (2) ,設(shè)平面PCD的法向量

          ,即.不防設(shè),可得.可取平面PAC的法向量于是從而.

          所以二面角A-PC-D的正弦值為.

          (3)設(shè)點(diǎn)E的坐標(biāo)為(0,0,h),其中,由此得.

          ,故 

          所以,,解得,即.

          解法二:(1)證明:由,可得,又由,,故.又,所以.

          (2)如圖,作于點(diǎn)H,連接DH.由,,可得.

          因此,從而為二面角A-PC-D的平面角.在中,,由此得由(1)知,故在中,

          因此所以二面角的正弦值為.

          (3)如圖,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012071821180638818491/SYS201207182118431693242163_ST.files/image044.png">,故過(guò)點(diǎn)B作CD的平行線必與線段AD相交,設(shè)交點(diǎn)為F,連接BE,EF. 故或其補(bǔ)角為異面直線BE與CD所成的角.由于BF∥CD,故.在中,

          中,由,,

          可得.由余弦定理,,

          所以.

           

          查看答案和解析>>

          設(shè)橢圓的左、右頂點(diǎn)分別為,點(diǎn)在橢圓上且異于兩點(diǎn),為坐標(biāo)原點(diǎn).

          (Ⅰ)若直線的斜率之積為,求橢圓的離心率;

          (Ⅱ)若,證明直線的斜率 滿足

          【解析】(1)解:設(shè)點(diǎn)P的坐標(biāo)為.由題意,有  ①

          ,得,

          ,可得,代入①并整理得

          由于,故.于是,所以橢圓的離心率

          (2)證明:(方法一)

          依題意,直線OP的方程為,設(shè)點(diǎn)P的坐標(biāo)為.

          由條件得消去并整理得  ②

          ,

          .

          整理得.而,于是,代入②,

          整理得

          ,故,因此.

          所以.

          (方法二)

          依題意,直線OP的方程為,設(shè)點(diǎn)P的坐標(biāo)為.

          由P在橢圓上,有

          因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012071821180638818491/SYS201207182118494193384555_ST.files/image036.png">,,所以,即   ③

          ,,得整理得.

          于是,代入③,

          整理得

          解得,

          所以.

           

          查看答案和解析>>

          某批數(shù)量較大的商品的次品率是5%,從中任意地連續(xù)取出10件,為所含次品的個(gè)數(shù),求

          分析:數(shù)量較大,意味著每次抽取時(shí)出現(xiàn)次品的概率都是0.05,可能取值是:0,1,2,…,10.10次抽取看成10次獨(dú)立重復(fù)試驗(yàn),所以抽到次品數(shù)服從二項(xiàng)分布,由公式可得解.

          查看答案和解析>>


          同步練習(xí)冊(cè)答案