日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (Ⅱ)由正弦定理.已知條件化為.?????????????????????????????????????????????????????????????????? 8分 查看更多

           

          題目列表(包括答案和解析)

          在△ABC中,內(nèi)角A、B、C所對(duì)邊的邊長(zhǎng)分別是a、b、c,已知c=2,C=.

          (Ⅰ)若△ABC的面積等于,求a、b;

          (Ⅱ)若,求△ABC的面積.

          【解析】第一問(wèn)中利用余弦定理及已知條件得又因?yàn)椤鰽BC的面積等于,所以,得聯(lián)立方程,解方程組得.

          第二問(wèn)中。由于即為即.

          當(dāng)時(shí), , ,   所以當(dāng)時(shí),得,由正弦定理得,聯(lián)立方程組,解得,得到。

          解:(Ⅰ) (Ⅰ)由余弦定理及已知條件得,………1分

          又因?yàn)椤鰽BC的面積等于,所以,得,………1分

          聯(lián)立方程,解方程組得.                 ……………2分

          (Ⅱ)由題意得,

          .             …………2分

          當(dāng)時(shí), , ,           ……1分

          所以        ………………1分

          當(dāng)時(shí),得,由正弦定理得,聯(lián)立方程組

          ,解得,;   所以

           

          查看答案和解析>>

          (2012•普陀區(qū)一模)給出問(wèn)題:已知△ABC滿足a•cosA=b•cosB,試判斷△ABC的形狀,某學(xué)生的解答如下:
          (i)a•
          b2+c2-a2
          2bc
          =b•
          a2+c2-b2
          2ac
          ?a2(b2+c2-a2)=b2(a2+c2-b2)?(a2-b2)•c2=(a2-b2)(a2+b2)?c2=a2+b2
          故△ABC是直角三角形.
          (ii)設(shè)△ABC外接圓半徑為R,由正弦定理可得,原式等價(jià)于2RsinAcosA=2RsinBcosB?sin2A=cos2B?A=B
          故△ABC是等腰三角形.
          綜上可知,△ABC是等腰直角三角形.
          請(qǐng)問(wèn):該學(xué)生的解答是否正確?若正確,請(qǐng)?jiān)谙旅鏅M線中寫出解題過(guò)程中主要用到的思想方法;若不正確,請(qǐng)?jiān)谙旅鏅M線中寫出你認(rèn)為本題正確的結(jié)果
          等腰或直角三角形
          等腰或直角三角形

          查看答案和解析>>

          給出問(wèn)題:已知滿足,試判定的形狀.某學(xué)生的解答如下:

          解:(i)由余弦定理可得,

          ,

          ,

          是直角三角形.

          (ii)設(shè)外接圓半徑為.由正弦定理可得,原式等價(jià)于

          ,

          是等腰三角形.

          綜上可知,是等腰直角三角形.

          請(qǐng)問(wèn):該學(xué)生的解答是否正確?若正確,請(qǐng)?jiān)谙旅鏅M線中寫出解題過(guò)程中主要用到的思想方法;若不正確,請(qǐng)?jiān)谙旅鏅M線中寫出你認(rèn)為本題正確的結(jié)果.           .

           

          查看答案和解析>>

          已知中,內(nèi)角的對(duì)邊的邊長(zhǎng)分別為,且

          (I)求角的大;

          (II)若的最小值.

          【解析】第一問(wèn),由正弦定理可得:sinBcosC=2sinAcosB-sinCcosB,即sin(B+C)=2sinAcosB,

          第二問(wèn),

          三角函數(shù)的性質(zhì)運(yùn)用。

          解:(Ⅰ)由正弦定理可得:sinBcosC=2sinAcosB-sinCcosB,即sin(B+C)=2sinAcosB, 

          (Ⅱ)由(Ⅰ)可知 

          ,,則當(dāng) ,即時(shí),y的最小值為

           

          查看答案和解析>>

          已知函數(shù).]

          (1)求函數(shù)的最小值和最小正周期;

          (2)設(shè)的內(nèi)角、的對(duì)邊分別為,,且,,

          ,求,的值.

          【解析】第一問(wèn)利用

          得打周期和最值

          第二問(wèn)

           

          ,由正弦定理,得,①  

          由余弦定理,得,即,②

          由①②解得

           

          查看答案和解析>>


          同步練習(xí)冊(cè)答案