日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 即()時(shí).單調(diào)遞減. 查看更多

           

          題目列表(包括答案和解析)

          已知函數(shù),(),

          (1)若曲線與曲線在它們的交點(diǎn)(1,c)處具有公共切線,求a,b的值

          (2)當(dāng)時(shí),若函數(shù)的單調(diào)區(qū)間,并求其在區(qū)間(-∞,-1)上的最大值。

          【解析】(1) 

          ∵曲線與曲線在它們的交點(diǎn)(1,c)處具有公共切線

          (2)令,當(dāng)時(shí),

          ,得

          時(shí),的情況如下:

          x

          +

          0

          -

          0

          +

           

           

          所以函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為

          當(dāng),即時(shí),函數(shù)在區(qū)間上單調(diào)遞增,在區(qū)間上的最大值為

          當(dāng),即時(shí),函數(shù)在區(qū)間內(nèi)單調(diào)遞增,在區(qū)間上單調(diào)遞減,在區(qū)間上的最大值為

          當(dāng),即a>6時(shí),函數(shù)在區(qū)間內(nèi)單調(diào)遞贈(zèng),在區(qū)間內(nèi)單調(diào)遞減,在區(qū)間上單調(diào)遞增。又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912442510881234/SYS201207091244511088175760_ST.files/image040.png">

          所以在區(qū)間上的最大值為

           

          查看答案和解析>>

          設(shè)函數(shù)

          (Ⅰ) 當(dāng)時(shí),求的單調(diào)區(qū)間;

          (Ⅱ) 若上的最大值為,求的值.

          【解析】第一問(wèn)中利用函數(shù)的定義域?yàn)椋?,2),.

          當(dāng)a=1時(shí),所以的單調(diào)遞增區(qū)間為(0,),單調(diào)遞減區(qū)間為(,2);

          第二問(wèn)中,利用當(dāng)時(shí), >0, 即上單調(diào)遞增,故上的最大值為f(1)=a 因此a=1/2.

          解:函數(shù)的定義域?yàn)椋?,2),.

          (1)當(dāng)時(shí),所以的單調(diào)遞增區(qū)間為(0,),單調(diào)遞減區(qū)間為(,2);

          (2)當(dāng)時(shí), >0, 即上單調(diào)遞增,故上的最大值為f(1)=a 因此a=1/2.

           

          查看答案和解析>>

          設(shè)函數(shù)

          (I)求的單調(diào)區(qū)間;

          (II)當(dāng)0<a<2時(shí),求函數(shù)在區(qū)間上的最小值.

          【解析】第一問(wèn)定義域?yàn)檎鏀?shù)大于零,得到.                            

          ,則,所以,得到結(jié)論。

          第二問(wèn)中, ().

          .                          

          因?yàn)?<a<2,所以.令 可得

          對(duì)參數(shù)討論的得到最值。

          所以函數(shù)上為減函數(shù),在上為增函數(shù).

          (I)定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912273087455588/SYS201207091228013432358116_ST.files/image005.png">.           ………………………1分

          .                            

          ,則,所以.  ……………………3分          

          因?yàn)槎x域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912273087455588/SYS201207091228013432358116_ST.files/image005.png">,所以.                            

          ,則,所以

          因?yàn)槎x域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912273087455588/SYS201207091228013432358116_ST.files/image005.png">,所以.          ………………………5分

          所以函數(shù)的單調(diào)遞增區(qū)間為,

          單調(diào)遞減區(qū)間為.                         ………………………7分

          (II) ().

          .                          

          因?yàn)?<a<2,所以,.令 可得.…………9分

          所以函數(shù)上為減函數(shù),在上為增函數(shù).

          ①當(dāng),即時(shí),            

          在區(qū)間上,上為減函數(shù),在上為增函數(shù).

          所以.         ………………………10分  

          ②當(dāng),即時(shí),在區(qū)間上為減函數(shù).

          所以.               

          綜上所述,當(dāng)時(shí),;

          當(dāng)時(shí),

           

          查看答案和解析>>

          已知函數(shù)取得極值

          (1)求的單調(diào)區(qū)間(用表示);

          (2)設(shè),,若存在,使得成立,求的取值范圍.

          【解析】第一問(wèn)利用

          根據(jù)題意取得極值,

          對(duì)參數(shù)a分情況討論,可知

          當(dāng)時(shí)遞增區(qū)間:    遞減區(qū)間: ,

          當(dāng)時(shí)遞增區(qū)間:    遞減區(qū)間: ,

          第二問(wèn)中, 由(1)知: ,

           

          從而求解。

          解:

          …..3分

          取得極值, ……………………..4分

          (1) 當(dāng)時(shí)  遞增區(qū)間:    遞減區(qū)間: ,

          當(dāng)時(shí)遞增區(qū)間:    遞減區(qū)間: , ………….6分

           (2)  由(1)知: ,

          ,

           

          ……………….10分

          , 使成立

              得:

           

          查看答案和解析>>

          已知函數(shù),

          (Ⅰ)求函數(shù)的單調(diào)遞減區(qū)間;

          (Ⅱ)令函數(shù)),求函數(shù)的最大值的表達(dá)式;

          【解析】第一問(wèn)中利用令,,

          第二問(wèn)中,=

          =

          =, ,則借助于二次函數(shù)分類(lèi)討論得到最值。

          (Ⅰ)解:令,,

          ,

          的單調(diào)遞減區(qū)間為:…………………4

          (Ⅱ)解:=

          =

          =

          , ,則……………………4

          對(duì)稱軸

          ①   當(dāng)時(shí),=……………1

          ②  當(dāng)時(shí),=……………1

          ③  當(dāng)時(shí),   ……………1

          綜上:

           

          查看答案和解析>>


          同步練習(xí)冊(cè)答案