日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (Ⅱ)若.設(shè).求數(shù)列的前項(xiàng)和, 查看更多

           

          題目列表(包括答案和解析)

          數(shù)列的前項(xiàng)和為,

          (Ⅰ)設(shè),證明:數(shù)列是等比數(shù)列;

          (Ⅱ)求數(shù)列的前項(xiàng)和.

          (Ⅲ)若,求不超過的最大的整數(shù)值.

           

          查看答案和解析>>

          數(shù)列的前項(xiàng)和為,且和1的等差中項(xiàng),等差數(shù)列滿足
          (1)求數(shù)列,的通項(xiàng)公式;
          (2)設(shè),數(shù)列的前n項(xiàng)和為,若對一切恒成立,求實(shí)數(shù)的最小值.

          查看答案和解析>>

          數(shù)列的前項(xiàng)和為
          (Ⅰ)設(shè),證明:數(shù)列是等比數(shù)列;
          (Ⅱ)求數(shù)列的前項(xiàng)和.
          (Ⅲ)若,,求不超過的最大的整數(shù)值.

          查看答案和解析>>

          (12分)數(shù)列的前項(xiàng)和為,).

          (Ⅰ)證明數(shù)列是等比數(shù)列,求出數(shù)列的通項(xiàng)公式;

          (Ⅱ)設(shè),求數(shù)列的前項(xiàng)和;

          (Ⅲ)數(shù)列中是否存在三項(xiàng),它們可以構(gòu)成等差數(shù)列?若存在,求出一組符合條件的項(xiàng);若不存在,說明理由.

          查看答案和解析>>

          數(shù)列的前項(xiàng)和為,且和1的等差中項(xiàng),等差數(shù)列滿足
          (1)求數(shù)列,的通項(xiàng)公式;
          (2)設(shè),數(shù)列的前n項(xiàng)和為,若對一切恒成立,求實(shí)數(shù)的最小值.

          查看答案和解析>>

          一、 C B C B B AC D A B    C D

          二、13.           14.              15.         16.3

          三、17(Ⅰ)

                      = =

          得,

          .

          故函數(shù)的零點(diǎn)為.         ……………………………………6分

          (Ⅱ)由,

          .又

                 

                   , 

                             ……………………………………12分

          18. 由三視圖可知:,底面ABCD為直角梯形,, BC=CD=1,AB=2

          (Ⅰ)∵  PB⊥DA,梯形ABCD中,PB=BC=CD=1,AB=2 ∴BD=

          又可得DA=,∴DA⊥BD ,∴DA⊥平面PDB,

          ∴  AD⊥PD                                   ……………………………4分

           

           (Ⅱ)  CM∥平面PDA  理由如下:

          取PB中點(diǎn)N,連結(jié)MN,DN,可證MN∥CD且MN=CD,∴CM∥DN,∴CM∥平面PDA

                                                                           …………8分

           (Ⅲ)            

                                                                      ……………12分

          19. (Ⅰ)九年級(1)班應(yīng)抽取學(xué)生10名; ………………………2分

          (Ⅱ)通過計(jì)算可得九(1)班抽取學(xué)生的平均成績?yōu)?6.5,九(2)班抽取學(xué)生的平均成績?yōu)?7.2.由此可以估計(jì)九(1)班學(xué)生的平均成績?yōu)?6.5, 九(2)班學(xué)生的平均成績?yōu)?nbsp;     17.2                                                     ………………………6分

          (Ⅲ)基本事件總數(shù)為15,滿足條件的事件數(shù)為9 ,故所求事件的概率為

          ………………………………12分

          20. (Ⅰ)證明 設(shè)

          相減得  

          注意到  

          有        

          即                           …………………………………………5分

          (Ⅱ)①設(shè)

          由垂徑定理,

          即       

          化簡得  

          當(dāng)軸平行時(shí),的坐標(biāo)也滿足方程.

          故所求的中點(diǎn)的軌跡的方程為;

              …………………………………………8分

          ②      假設(shè)過點(diǎn)P作直線與有心圓錐曲線交于兩點(diǎn),且P為的中點(diǎn),則

                   

          由于 

          直線,即,代入曲線的方程得

                       

                      

          故這樣的直線不存在.                      ……………………………………12分

          21.(Ⅰ)函數(shù)的定義域?yàn)?sub>

          由題意易知,   得    ;

                                       當(dāng)時(shí),當(dāng)時(shí),

          故函數(shù)的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為.   …………………………6分

             (Ⅱ)

          ①     當(dāng)時(shí),遞減,無極值.

          ②     當(dāng)時(shí),由

          當(dāng)時(shí),當(dāng)時(shí),

          時(shí),函數(shù)的極大值為

          ;

          函數(shù)無極小值.                                 …………………………13分

          22.(Ⅰ)            

                                    …………………………………………4分

          (Ⅱ) ,

                    ……………………………8分

           (Ⅲ)假設(shè)

          ,可求

          故存在,使恒成立.

                                             ……………………………………13分

           

           

           

           

           


          同步練習(xí)冊答案