日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. ③函數(shù)在R上存在反函數(shù), 查看更多

           

          題目列表(包括答案和解析)

          設(shè)函數(shù)f(x)的定義域、值域均為R,f(x)的反函數(shù)為f-1(x),且對(duì)任意實(shí)數(shù)x,均有f(x)+f-1(x)<
          5
          2
          x
          ,定義數(shù)列an:a0=8,a1=10,an=f(an-1),n=1,2,….
          (1)求證:an+1+an-1
          5
          2
          an(n=1,2,…)
          ;
          (2)設(shè)bn=an+1-2an,n=0,1,2,….求證:bn<(-6)(
          1
          2
          )n
          (n∈N*);
          (3)是否存在常數(shù)A和B,同時(shí)滿足①當(dāng)n=0及n=1時(shí),有an=
          A•4n+B
          2n
          成立;②當(dāng)n=2,3,…時(shí),有an
          A•4n+B
          2n
          成立.如果存在滿足上述條件的實(shí)數(shù)A、B,求出A、B的值;如果不存在,證明你的結(jié)論.

          查看答案和解析>>

          設(shè)函數(shù)y=f(x)由方程x|x|+y|y|=1確定,下列結(jié)論正確的是
           
          (請(qǐng)將你認(rèn)為正確的序號(hào)都填上)
          (1)f(x)是R上的單調(diào)遞減函數(shù);
          (2)對(duì)于任意x∈R,f(x)+x>0恒成立;
          (3)對(duì)于任意a∈R,關(guān)于x的方程f(x)=a都有解;
          (4)f(x)存在反函數(shù)f-1(x),且對(duì)于任意x∈R,總有f(x)=f-1(x)成立.

          查看答案和解析>>

          記函數(shù)f(x)的定義域?yàn)镈,若存在x0∈D,使f(x0)=x0成立,則稱以(x0,x0)為坐標(biāo)的點(diǎn)為函數(shù)f(x)圖象上的不動(dòng)點(diǎn).
          (1)若函數(shù)f(x)=
          3x+a
          x+b
          圖象上有兩個(gè)關(guān)于原點(diǎn)對(duì)稱的不動(dòng)點(diǎn),求實(shí)數(shù)a,b應(yīng)滿足的條件;
          (2)設(shè)點(diǎn)P(x,y)到直線y=x的距離d=
          |x-y|
          2
          .在(1)的條件下,若a=8,記函數(shù)f(x)圖象上的兩個(gè)不動(dòng)點(diǎn)分別為A1,A2,P為函數(shù)f(x)圖象上的另一點(diǎn),其縱坐標(biāo)yP>3,求點(diǎn)P到直線A1A2距離的最小值及取得最小值時(shí)點(diǎn)P的坐標(biāo).
          (3)下述命題“若定義在R上的奇函數(shù)f(x)圖象上存在有限個(gè)不動(dòng)點(diǎn),則不動(dòng)點(diǎn)有奇數(shù)個(gè)”是否正確?若正確,請(qǐng)給予證明;若不正確,請(qǐng)舉一反例.若地方不夠,可答在試卷的反面.

          查看答案和解析>>

          設(shè)函數(shù)f(x)的定義域?yàn)镈,若存在x0∈D,使f(x0)=x0成立,則稱以(x0,x0)為坐標(biāo)的點(diǎn)為函數(shù)f(x)圖象上的不動(dòng)點(diǎn).
          (1)若函數(shù)f(x)=
          3x+ax+b
          圖象上有兩個(gè)關(guān)于原點(diǎn)對(duì)稱的不動(dòng)點(diǎn),求a,b應(yīng)滿足的條件;
          (2)在(1)的條件下,若a=8,記函數(shù)f(x)圖象上的兩個(gè)不動(dòng)點(diǎn)分別為A、B,點(diǎn)M為函數(shù)圖象上的另一點(diǎn),且其縱坐標(biāo)yM>3,求點(diǎn)M到直線AB距離的最小值及取得最小值時(shí)M點(diǎn)的坐標(biāo);
          (3)下述命題“若定義在R上的奇函數(shù)f(x)圖象上存在有限個(gè)不動(dòng)點(diǎn),則不動(dòng)點(diǎn)的有奇數(shù)個(gè)”是否正確?若正確,給出證明,并舉一例;若不正確,請(qǐng)舉一反例說(shuō)明.

          查看答案和解析>>

          設(shè)函數(shù)y=f(x)由方程x|x|+y|y|=1確定,下列結(jié)論正確的是 ________(請(qǐng)將你認(rèn)為正確的序號(hào)都填上)
          (1)f(x)是R上的單調(diào)遞減函數(shù);
          (2)對(duì)于任意x∈R,f(x)+x>0恒成立;
          (3)對(duì)于任意a∈R,關(guān)于x的方程f(x)=a都有解;
          (4)f(x)存在反函數(shù)f-1(x),且對(duì)于任意x∈R,總有f(x)=f-1(x)成立.

          查看答案和解析>>

          2009年4月

          一、選擇題:本大題共10小題,每題5分,共50分.

          1.A    2.D    3.B    4.A    5.D    6.C    7.D    8.B    9.B    10.C

          二、填空題:本大題共5小題,每題5分,共25分.

          11.                                    12.                                  13.

          14.                                  15.①②⑤

          三、解答題:本題共6小題,共75分.

          16.解:(1) ??????????????????????????????????????? 3分

          ??????????????????????????????????????????????????????????????????????????? 5分

          (2) ????????????????????????????????????????????????????? 8分

          ????????????????????????????????????????????????????????????????? 9分

          ???????????????????????????????????????????????????????????????????? 10分

          ?????????????????????????????????????????????????????????????????????????? 11分

          ?????????????? 13分

          17.解:(1) 有兩道題答對(duì)的概率為,有一道題答對(duì)的概率為??????????????????????????? 2分

          ????????????????????????????????????????????????????????? 5分

          (2) ?????????????????????????????????????????????????????? 7分

          ?????????????????????????????? 9分

          ??????????????????????????????? 11分

          的分布列為

          35

          40

          45

          50

          P

          ???????????????????????????????????? 13分

          18.(1) 證明:取CE中點(diǎn)M,則 FMDE

          ∵ ABDE       ∴ ABFM

          ∴ ABMF為平行四邊形

          ∴ AF∥BM

          又AF平面BCE,BM平面BCE

          ∴ AF∥平面BCE??????????????????????????????????????????????????????????????????? 4分

          (2) 解:過(guò)C作l∥AB,則l∥DE     ∴ 平面ABC平面CDE = l

          ∵ AB⊥平面ACD      ∴ l⊥平面ACD

          ∴ ∠ACD即為所求二面角的平面角,為60?????????????????????????????????? 8分

          (3) 解:設(shè)B在平面AFE內(nèi)的射影為,作MN⊥FE于N,作CG⊥EF于G.

          ∴ BE與平面AFE所成角為

          ∵ AF⊥CD,AF⊥DE   ∴ AF⊥平面CDE    ∴ AF⊥MN ∴ MN⊥平面AEF

          ∵ BM∥平面AEF       ∴

          由△CGF∽△EDF,得    ∴

              ∴

          ???????????????????????????????????????????????????????????????? 13分

          19.解:(1) ?????????????????????????????????????????????????????????????????????????? 2分

                 由

          上單調(diào)遞減,在上單調(diào)遞增????????????????????????? 5分

          (2) ?????????????????????????????????????????? 6分

          上遞減     ∴ ??????????????? 9分

          設(shè)    ∵    ∴上遞減

           即

          ???????????????????????????????????????????????????????????????????????? 12分

          20.解:(1)  B(0,? b),A(,0),F(xiàn)(c,0),P(c,

                ∴ D為線段FP的中點(diǎn),

          ∴ D為(c,)??????????????????????????????????????????????????????????????????? 2分

          ,∴ a = 2b,

          ?????????????????????????????????????????????? 5分

          (2)  a = 2,則b = 1,B(0,?1)     雙曲線的方程為   ①

          設(shè)M(x1,y1),N(x2,y2),C(0,m)

          由已知???????????????????????????? 7分

          設(shè)

          整理得:

          對(duì)滿足的k恒成立

          故存在y軸上的點(diǎn)C(0,4),使為常數(shù)17.????????????????????? 12分

          21.解:(1) ???????????????????????????????????????????????????????????????????????????? 1分

          切線方程為與y = kx聯(lián)立得:

          ,令y = 0得:xB = 2t????????????????????????????????????????????????? 3分

          ??????????????????????????????????????????????????????? 4分

          (2) 由??????????????????????????????????????????????????? 5分

          兩邊取倒數(shù)得:      ∴

          是以為首項(xiàng),為公比的等比數(shù)列(時(shí))

          或是各項(xiàng)為0的常數(shù)列(k = 3時(shí)),此時(shí)an = 1

          時(shí)??????????????????????????????? 7分

          當(dāng)k = 3時(shí)也符合上式

          ????????????????????????????????????????????????????????????????? 8分

          (3) 作差得

          其中

          由于 1 < k < 3,∴

          當(dāng)?????????????????????????????????????????????????? 12分

           

           


          同步練習(xí)冊(cè)答案