日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 當(dāng)時(shí).令.則.故. 查看更多

           

          題目列表(包括答案和解析)

          某省環(huán)保研究所對(duì)市中心每天環(huán)境放射性污染情況進(jìn)行調(diào)查研究后,發(fā)現(xiàn)一天中環(huán)境綜合放射性污染指數(shù)與時(shí)刻(時(shí)) 的關(guān)系為,其中是與氣象有關(guān)的參數(shù),且

          (1)令, ,寫出該函數(shù)的單調(diào)區(qū)間,并選擇其中一種情形進(jìn)行證明;

          (2)若用每天的最大值作為當(dāng)天的綜合放射性污染指數(shù),并記作,求;

          (3)省政府規(guī)定,每天的綜合放射性污染指數(shù)不得超過2,試問目前市中心的綜合放射性污染指數(shù)是否超標(biāo)?

          【解析】第一問利用定義法求證單調(diào)性,并判定結(jié)論。

          第二問(2)由函數(shù)的單調(diào)性知,

          ,即t的取值范圍是. 

          當(dāng)時(shí),記

           

          上單調(diào)遞減,在上單調(diào)遞增,

          第三問因?yàn)楫?dāng)且僅當(dāng)時(shí),.

          故當(dāng)時(shí)不超標(biāo),當(dāng)時(shí)超標(biāo).

           

          查看答案和解析>>

          (本小題滿分12分)已知函數(shù)

          (I)若函數(shù)在區(qū)間上存在極值,求實(shí)數(shù)a的取值范圍;

          (II)當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)k的取值范圍.

          (Ⅲ)求證:解:(1),其定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052512313679685506/SYS201205251234077812428021_ST.files/image007.png">,則

          ,

          當(dāng)時(shí),;當(dāng)時(shí),

          在(0,1)上單調(diào)遞增,在上單調(diào)遞減,

          即當(dāng)時(shí),函數(shù)取得極大值.                                       (3分)

          函數(shù)在區(qū)間上存在極值,

           ,解得                                            (4分)

          (2)不等式,即

          (6分)

          ,則,

          ,即上單調(diào)遞增,                          (7分)

          ,從而,故上單調(diào)遞增,       (7分)

                    (8分)

          (3)由(2)知,當(dāng)時(shí),恒成立,即,

          ,則,                               (9分)

                                                                                 (10分)

          以上各式相加得,

          ,

                                     

                                                  (12分)

          。

           

          查看答案和解析>>

          已知函數(shù)為實(shí)數(shù)).

          (Ⅰ)當(dāng)時(shí),求的最小值;

          (Ⅱ)若上是單調(diào)函數(shù),求的取值范圍.

          【解析】第一問中由題意可知:. ∵ ∴  ∴.

          當(dāng)時(shí),; 當(dāng)時(shí),. 故.

          第二問.

          當(dāng)時(shí),,在上有遞增,符合題意;  

          ,則,∴上恒成立.轉(zhuǎn)化后解決最值即可。

          解:(Ⅰ) 由題意可知:. ∵ ∴  ∴.

          當(dāng)時(shí),; 當(dāng)時(shí),. 故.

          (Ⅱ) .

          當(dāng)時(shí),,在上有,遞增,符合題意;  

          ,則,∴上恒成立.∵二次函數(shù)的對(duì)稱軸為,且

            .   綜上

           

          查看答案和解析>>

          已知,函數(shù)

          (1)當(dāng)時(shí),求函數(shù)在點(diǎn)(1,)的切線方程;

          (2)求函數(shù)在[-1,1]的極值;

          (3)若在上至少存在一個(gè)實(shí)數(shù)x0,使>g(xo)成立,求正實(shí)數(shù)的取值范圍。

          【解析】本試題中導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用。(1)中,那么當(dāng)時(shí),  又    所以函數(shù)在點(diǎn)(1,)的切線方程為;(2)中令   有 

          對(duì)a分類討論,和得到極值。(3)中,設(shè),,依題意,只需那么可以解得。

          解:(Ⅰ)∵  ∴

          ∴  當(dāng)時(shí),  又    

          ∴  函數(shù)在點(diǎn)(1,)的切線方程為 --------4分

          (Ⅱ)令   有 

          ①         當(dāng)時(shí)

          (-1,0)

          0

          (0,

          ,1)

          +

          0

          0

          +

          極大值

          極小值

          的極大值是,極小值是

          ②         當(dāng)時(shí),在(-1,0)上遞增,在(0,1)上遞減,則的極大值為,無極小值。 

          綜上所述   時(shí),極大值為,無極小值

          時(shí)  極大值是,極小值是        ----------8分

          (Ⅲ)設(shè)

          對(duì)求導(dǎo),得

          ,    

          在區(qū)間上為增函數(shù),則

          依題意,只需,即 

          解得  (舍去)

          則正實(shí)數(shù)的取值范圍是(,

           

          查看答案和解析>>

          已知函數(shù) R).

          (Ⅰ)若 ,求曲線  在點(diǎn)  處的的切線方程;

          (Ⅱ)若  對(duì)任意  恒成立,求實(shí)數(shù)a的取值范圍.

          【解析】本試題主要考查了導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用。

          第一問中,利用當(dāng)時(shí),

          因?yàn)榍悬c(diǎn)為(), 則,                 

          所以在點(diǎn)()處的曲線的切線方程為:

          第二問中,由題意得,即可。

          Ⅰ)當(dāng)時(shí),

          ,                                  

          因?yàn)榍悬c(diǎn)為(), 則,                  

          所以在點(diǎn)()處的曲線的切線方程為:.    ……5分

          (Ⅱ)解法一:由題意得,.      ……9分

          (注:凡代入特殊值縮小范圍的均給4分)

          ,           

          因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911405226518211/SYS201207091141419057564738_ST.files/image016.png">,所以恒成立,

          上單調(diào)遞增,                            ……12分

          要使恒成立,則,解得.……15分

          解法二:                 ……7分

                (1)當(dāng)時(shí),上恒成立,

          上單調(diào)遞增,

          .                  ……10分

          (2)當(dāng)時(shí),令,對(duì)稱軸,

          上單調(diào)遞增,又    

          ① 當(dāng),即時(shí),上恒成立,

          所以單調(diào)遞增,

          ,不合題意,舍去  

          ②當(dāng)時(shí),, 不合題意,舍去 14分

          綜上所述: 

           

          查看答案和解析>>


          同步練習(xí)冊(cè)答案