日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 3.本卷共10小題.共90分. 查看更多

           

          題目列表(包括答案和解析)

          必須用黑色字跡鋼筆或簽字筆作答,答案必須寫在答題卷各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用鉛筆和涂改液。不按以上要求作答的答案無效。

          第Ⅰ卷   選擇題(共50分)

          一、選擇題(本大題共10小題,每小題5分,滿分50分)

          1、設(shè)全集U={是不大于9的正整數(shù)},{1,2,3 },{3,4,5,6}則圖中陰影部分所表示的集合為(  )

                 A.{1,2,3,4,5,6}    B. {7,8,9}

                 C.{7,8}                        D.    {1,2,4,5,6,7,8,9}

          2、計算復(fù)數(shù)(1-i)2等于(  )

          A.0                B.2              C. 4i                   D. -4i

          查看答案和解析>>

          考試結(jié)束,請將本試題卷和答題卡一并上交。

          一、選擇題(本大題共10小題,每小題5分,共50分.在每小題給出的四個選項中,只有一項是符合題目要求的)

          1.設(shè)全集,集合,,則圖中的陰影部分表示的集合為

          A.                  B.

          C.                 D.

          2.已知非零向量、滿足,那么向量與向量的夾角為

          A.    B.    C.    D.

          3.的展開式中第三項的系數(shù)是

                 A.               B.               C.15              D.

          4.圓與直線相切于點,則直線的方程為

          A.   B.   C.  D.

          查看答案和解析>>

          已知均為正數(shù),,則的最小值是            (    )

                   A.            B.           C.             D.

          第Ⅱ卷  (非選擇題  共90分)

          二、填空題:本大題共4小題,每小題4分,共16分,將答案填在題中的橫線上。

          查看答案和解析>>

           

          第Ⅱ卷(非選擇題,共90分)

          二、填空題:(本大題4小題,每小題5分,滿分20分)

          13.用一個平面去截正方體,其截面是一個多邊形,則這個多邊形的邊數(shù)最多是     條 。

           

          查看答案和解析>>

          第II卷(共90分)

          二、填空題:本大題共4小題,每小題4分,共16分.

          13.

          查看答案和解析>>

          評分說明:

          1.本解答給出了一種或幾種解法供參考,如果考生的解法與本解答不同,可根據(jù)試題的主要考查內(nèi)容比照評分參考制訂相應(yīng)的評分細則.

          2.對計算題,當(dāng)考生的解答在某一步出現(xiàn)錯誤時,如果后繼部分的解答未改變該題的內(nèi)容和難度,可視影響的程度決定后繼部分的給分,但不得超過該部分正確解答應(yīng)得分數(shù)的一半;如果后繼部分的解答有較嚴重的錯誤,就不再給分.

          3.解答右端所注分數(shù),表示考生正確做到這一步應(yīng)得的累加分數(shù).

          4.只給整數(shù)分數(shù).選擇題不給中間分.

          一.選擇題

          1.D      2.B       3.B       4.C       5.A      6.C       7.C       8.A      9.B       10.D

          11.B     12.D

          二.填空題

          13.300;     14.60;       15.①、②③或①、③②;     16.103.

          三.解答題

          17.解:

          (Ⅰ)因為點的坐標(biāo)為,根據(jù)三角函數(shù)定義可知,,

          所以.     2分

          (Ⅱ)∵,∴. 3分

          由余弦定理,得 

          .   5分

          ,∴,∴. 7分

          ,∴.     9分

          故BC的取值范圍是.(或?qū)懗?sub>) 10分

          18.解:

          (Ⅰ)記“恰好選到1個曾經(jīng)參加過社會實踐活動的同學(xué)”為事件的,    1分

          則其概率為.   5分

          (Ⅱ)記“活動結(jié)束后該宿舍至少有3個同學(xué)仍然沒有參加過社會實踐活動”為事件的B,“活動結(jié)束后該宿舍仍然有3個同學(xué)沒有參加過社會實踐活動”為事件的C,“活動結(jié)束后該宿舍仍然有4個同學(xué)沒有參加過社會實踐活動”為事件的D. 6分

          ,.     10分

          =+=.      12分

          19.證:

          (Ⅰ)因為四邊形是矩形∴,

          又∵ABBC,∴平面.     2分

          平面,∴平面CA1B⊥平面A1ABB1.       3分

          解:(Ⅱ)過A1A1DB1BD,連接

          平面,

          BCA1D

          平面BCC1B1,

          故∠A1CD為直線與平面所成的角.

                 5分

          在矩形中,,

          因為四邊形是菱形,∠A1AB=60°, CB=3,AB=4,

          ,. 7分

          (Ⅲ)∵,∴平面

          到平面的距離即為到平面的距離. 9分

          連結(jié),交于點O,

          ∵四邊形是菱形,∴

          ∵平面平面,∴平面

          即為到平面的距離. 11分

          ,∴到平面的距離為.  12分

           

          20.解:

          (Ⅰ)由題意,,  1分

          又∵數(shù)列為等差數(shù)列,且,∴.   3分

          ,∴.     5分

          (Ⅱ)的前幾項依次為, 7分

          =5.    8分

          .    12分

          21.解:

          (Ⅰ)∵,     2分

          ,得.     4分

          的單調(diào)增區(qū)間為.  5分

          (Ⅱ)當(dāng)時,恒有||≤2,即恒有成立.

          即當(dāng)時,      6分

          由(Ⅰ)知上為增函數(shù),在上為減函數(shù),在上為增函數(shù),

          ,,∴

          max.       8分

          ,,∴

          min.   10分

          .解得

          所以,當(dāng)時,函數(shù)上恒有||≤2成立. 12分

          22.解:

          (Ⅰ)由已知,,

          解得    2分

          ,∴

          軸,.  4分

          ,

          成等比數(shù)列.    6分

          (Ⅱ)設(shè)、,由

          得  ,

             8分

          .     10分

          ,∴.∴,或

          ∵m>0,∴存在,使得.     12分

           


          同步練習(xí)冊答案