日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖.為坐標原點.C是圓與x軸正半軸的交點.點A.B在單位圓O上沿逆時針方向移動.設(shè). 查看更多

           

          題目列表(包括答案和解析)

          精英家教網(wǎng)如圖,橢圓C的中心在原點,焦點在x軸上,F(xiàn)1,F(xiàn)2分別是橢圓C的左、右焦點,M是橢圓短軸的一個端點,過F1的直線l與橢圓交于A,B兩點,△MF1F2的面積為4,△ABF2的周長為8
          2

          (Ⅰ)求橢圓C的方程;
          (Ⅱ)設(shè)點Q的坐標為(1,0),是否存在橢圓上的點P及以Q為圓心的一個圓,使得該圓與直線PF1,PF2都相切,如存在,求出P點坐標及圓的方程,如不存在,請說明理由.

          查看答案和解析>>

          如圖,在平面直角坐標系xOy中,橢圓C=1(a>b>0)的離心率為,以坐標原點為圓心,橢圓C的短半軸長為半徑的圓與直線xy+2=0相切.

          (1)求橢圓C的方程;
          (2)已知點P(0,1),Q(0,2),設(shè)M,N是橢圓C上關(guān)于y軸對稱的不同兩點,直線PMQN相交于點T.求證:點T在橢圓C上.

          查看答案和解析>>

          如圖,在平面直角坐標系xOy中,橢圓C:=1(a>b>0)的離心率為,以原點為圓心,橢圓C的短半軸長為半徑的圓與直線x-y+2=0相切.

          (1)求橢圓C的方程;
          (2)已知點P(0,1),Q(0,2).設(shè)M、N是橢圓C上關(guān)于y軸對稱的不同兩點,直線PM與QN相交于點T,求證:點T在橢圓C上.

          查看答案和解析>>

          如圖,在平面直角坐標系xOy中,橢圓C=1(a>b>0)的離心率為,以坐標原點為圓心,橢圓C的短半軸長為半徑的圓與直線xy+2=0相切.

          (1)求橢圓C的方程;
          (2)已知點P(0,1),Q(0,2),設(shè)M,N是橢圓C上關(guān)于y軸對稱的不同兩點,直線PMQN相交于點T.求證:點T在橢圓C上.

          查看答案和解析>>

          如圖,在平面直角坐標系xOy中,橢圓C:=1(a>b>0)的離心率為,以原點為圓心,橢圓C的短半軸長為半徑的圓與直線x-y+2=0相切.

          (1)求橢圓C的方程;
          (2)已知點P(0,1),Q(0,2).設(shè)M、N是橢圓C上關(guān)于y軸對稱的不同兩點,直線PM與QN相交于點T,求證:點T在橢圓C上.

          查看答案和解析>>

          評分說明:

          1.本解答給出了一種或幾種解法供參考,如果考生的解法與本解答不同,可根據(jù)試題的主要考查內(nèi)容比照評分參考制訂相應(yīng)的評分細則.

          2.對計算題,當考生的解答在某一步出現(xiàn)錯誤時,如果后繼部分的解答未改變該題的內(nèi)容和難度,可視影響的程度決定后繼部分的給分,但不得超過該部分正確解答應(yīng)得分數(shù)的一半;如果后繼部分的解答有較嚴重的錯誤,就不再給分.

          3.解答右端所注分數(shù),表示考生正確做到這一步應(yīng)得的累加分數(shù).

          4.只給整數(shù)分數(shù).選擇題不給中間分.

          一.選擇題

          1.D      2.B       3.B       4.C       5.A      6.C       7.C       8.A      9.B       10.D

          11.B     12.D

          二.填空題

          13.300;     14.60;       15.①、②③或①、③②;     16.103.

          三.解答題

          17.解:

          (Ⅰ)因為點的坐標為,根據(jù)三角函數(shù)定義可知,,,

          所以.     2分

          (Ⅱ)∵,,∴. 3分

          由余弦定理,得 

          .   5分

          ,∴,∴. 7分

          ,∴.     9分

          故BC的取值范圍是.(或?qū)懗?sub>) 10分

          18.解:

          (Ⅰ)記“恰好選到1個曾經(jīng)參加過社會實踐活動的同學(xué)”為事件的,    1分

          則其概率為.   5分

          (Ⅱ)記“活動結(jié)束后該宿舍至少有3個同學(xué)仍然沒有參加過社會實踐活動”為事件的B,“活動結(jié)束后該宿舍仍然有3個同學(xué)沒有參加過社會實踐活動”為事件的C,“活動結(jié)束后該宿舍仍然有4個同學(xué)沒有參加過社會實踐活動”為事件的D. 6分

          ,.     10分

          =+=.      12分

          19.證:

          (Ⅰ)因為四邊形是矩形∴

          又∵ABBC,∴平面.     2分

          平面,∴平面CA1B⊥平面A1ABB1.       3分

          解:(Ⅱ)過A1A1DB1BD,連接

          平面,

          BCA1D

          平面BCC1B1,

          故∠A1CD為直線與平面所成的角.

                 5分

          在矩形中,,

          因為四邊形是菱形,∠A1AB=60°, CB=3,AB=4,

          . 7分

          (Ⅲ)∵,∴平面

          到平面的距離即為到平面的距離. 9分

          連結(jié),交于點O,

          ∵四邊形是菱形,∴

          ∵平面平面,∴平面

          即為到平面的距離. 11分

          ,∴到平面的距離為.  12分

           

          20.解:

          (Ⅰ)由題意,,  1分

          又∵數(shù)列為等差數(shù)列,且,∴.   3分

          ,∴.     5分

          (Ⅱ)的前幾項依次為, 7分

          =5.    8分

          .    12分

          21.解:

          (Ⅰ)∵,     2分

          ,得.     4分

          的單調(diào)增區(qū)間為.  5分

          (Ⅱ)當時,恒有||≤2,即恒有成立.

          即當時,      6分

          由(Ⅰ)知上為增函數(shù),在上為減函數(shù),在上為增函數(shù),

          ,,∴

          max.       8分

          ,,∴

          min.   10分

          .解得

          所以,當時,函數(shù)上恒有||≤2成立. 12分

          22.解:

          (Ⅰ)由已知,,

          解得    2分

          ,∴

          軸,.  4分

          ,

          成等比數(shù)列.    6分

          (Ⅱ)設(shè)、,由

          得  ,

             8分

          .     10分

          ,∴.∴,或

          ∵m>0,∴存在,使得.     12分

           


          同步練習(xí)冊答案