日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 2.答卷前將密封線內(nèi)的項目填寫清楚. 查看更多

           

          題目列表(包括答案和解析)

          如圖,下面的表格內(nèi)的數(shù)值填寫規(guī)則如下:先將第1行的所有空格填上1;再把一個首項為1,公比為q的數(shù)列{an}依次填入第一列的空格內(nèi);其它空格按照“任意一格的數(shù)是它上面一格的數(shù)與它左邊一格的數(shù)之和”的規(guī)則填寫.
          第1列 第2列 第3列 第n列
          第1行 1 1 1 1
          第2行 q
          第3行 q2
          第n行 qn-1
          (1)設(shè)第2行的數(shù)依次為b1,b2,…,bn,試用n,q表示b1+b2+…+bn的值;
          (2)設(shè)第3列的數(shù)依次為c1,c2,c3,…,cn,求證:對于任意非零實數(shù)q,c1+c3>2c2;
          (3)能否找到q的值,使得(2)中的數(shù)列c1,c2,c3,…,cn的前m項c1,c2,…,cm(m≥3)成為等比數(shù)列?若能找到,m的值有多少個?若不能找到,說明理由.

          查看答案和解析>>

          如圖是將二進制數(shù)11111(2)化為十進制數(shù)的一個程序框圖.
          (1)將判斷框內(nèi)的條件補充完整;
          (2)請用直到型循環(huán)結(jié)構(gòu)改寫流程圖.

          查看答案和解析>>

          組委會計劃對參加某項田徑比賽的12名運動員的血樣進行突擊檢驗,檢查是否含有興奮劑HGH成分.采用如下檢測方法:將所有待檢運動員分成4個小組,每組3個人,再把每個人的血樣分成兩份,化驗室將每個小組內(nèi)的3個人的血樣各一份混合在一起進行化驗,若結(jié)果中不含HGH成分,那么該組的3個人只需化驗這一次就算合格;如果結(jié)果中含HGH成分,那么需對該組進行再次檢驗,即需要把這3個人的另一份血樣逐個進行化驗,才能最終確定是否檢驗合格,這時,對這3個人一共進行了4次化驗,假定對所有人來說,化驗結(jié)果中含有HGH成分的概率均為
          110

          (Ⅰ)求一個小組只需經(jīng)過一次檢驗就合格的概率;
          (Ⅱ)設(shè)一個小組檢驗次數(shù)為隨機變量ξ,求ξ的分布列及數(shù)學(xué)期望;
          (Ⅲ)至少有兩個小組只需經(jīng)過一次檢驗就合格的概率.(精確到0.01,參考數(shù)據(jù):0.2713≈0.020,0.2714≈0.005,0.7292≈0.500)

          查看答案和解析>>

          (2008•成都二模)(新華網(wǎng))反興奮劑的大敵、服藥者的寵兒--HGH(人體生長激素),有望在8月的北京奧運會上首次“伏法”.據(jù)悉,國際體育界研究近10年仍不見顯著成效的HGH檢測,日前已取得新的進展,新生產(chǎn)的檢測設(shè)備有希望在北京奧運會上使用.若組委會計劃對參加某項田徑比賽的120名運動員的血樣進行突擊檢查,采用如下化驗
          方法:將所有待檢運動員分成若干小組,每組m個人,再把每個人的血樣分成兩份,化驗時將每個小組內(nèi)的m個人的血樣各一份混合在一起進行化驗,若結(jié)果中不含HGH成分,那么該組的m個人只需化驗這一次就算檢驗合格;如果結(jié)果中含有HGH成分,那么需要對該組進行再次檢驗,即需要把這m個人的另一份血樣逐個進行化驗,才能最終確定是否檢驗合格,這時,對這m個人一共需要進行m+1次化驗.假定對所有人來說,化驗結(jié)果中含有HGH成分的概率均為
          110
          .當(dāng)m=3時,
          (1)求一個小組只需經(jīng)過一次檢驗就合格的概率;
          (2)設(shè)一個小組的檢驗次數(shù)為隨機變量ξ,求ξ的分布列及數(shù)學(xué)期望.

          查看答案和解析>>

          .假定平面內(nèi)的一條直線將該平面內(nèi)的一個區(qū)域分成面積相等的兩個區(qū)域,則稱這條直線平分這個區(qū)域.如圖,是平面內(nèi)的任意一個封閉區(qū)域.現(xiàn)給出如下結(jié)論:

                   ① 過平面內(nèi)的任意一點至少存在一條直線平分區(qū)域

                   ②過平面內(nèi)的任意一點至多存在一條直線平分區(qū)域;

                   ③ 過區(qū)域內(nèi)的任意一點至少存在兩條直線平分區(qū)域

          ④ 過區(qū)域內(nèi)的某一點可能存在無數(shù)條直線平分區(qū)域

                   其中結(jié)論正確的是

                 A.①③                              B.①④                              C.②③                              D.③④

           

          查看答案和解析>>

           

          一、選擇題:本大題共12個小題,每小題5分,共60分.

          1-5:DBADC; 6-10:BACDC; 11-12: BC.

          二、填空題:本大題共4個小題,每小題4分,共16分.

          13.3; 14.-4; 15.1; 16.

          三、解答題:本大題共6個小題,共74分.解答要寫出文字說明,證明過程或演算步驟.

           

          17.解:(Ⅰ)∵l1∥l2,

          ,????????????????????????????????????????????????????????????????????????????????????????? 3分

          .????????????????????????????????????????????????????????????????????????????????? 6分

          (Ⅱ)∵,

          ,∴,當(dāng)且僅當(dāng)時。ⅲ剑ⅲ??????????? 8分

          ,∴,?????????????????????????????????????????? 10分

          ,當(dāng)且僅當(dāng)時。ⅲ剑ⅲ

          故△ABC面積取最大值為.??????????????????????????????????????????????????????????????????????????? 12分

           

          18.解:(Ⅰ)ξ=3表示取出的三個球中數(shù)字最大者為3.

          ①三次取球均出現(xiàn)最大數(shù)字為3的概率;??????????????????????????????????????? 1分

          ②三次取球中有2次出現(xiàn)最大數(shù)字3的概率;???????????????????? 3分

          ③三次取球中僅有1次出現(xiàn)最大數(shù)字3的概率.????????????????? 5分

          ∴P(ξ=3)=P1+P2+P3=.?????????????????????????????????????????????????????????????????????????????? 6分

          (Ⅱ)在ξ=k時, 利用(Ⅰ)的原理可知:

          (k=1、2、3、4).???????? 8分

          則ξ的概率分布列為:

          ξ

          1

          2

          3

          4

          P

          ??????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????? 10分

          ∴ξ的數(shù)學(xué)期望Eξ=1×+2×+3×+4× = .???????????????????????????????? 12分

           

          19.(Ⅰ)證明:∵四邊形AA1C1C是菱形,∴AA1=A1C1=C1C=CA=1,∴△AA1B是等邊三角形,設(shè)O是AA1的中點,連接BO,則BO⊥AA1. 2分

          ∵側(cè)面ABB1A1⊥AA1C1C,∴BO⊥平面AA1C1C,菱形AA1C1C面積為,知C到AA1的距離為,,∴△AA1C1是等邊三角形,且C1O⊥AA1,又C1O∩BO=O.

          ∴AA1⊥面BOC1,又BC1Ì面BOC1.∴AA1⊥BC1.???????????????????????????????????????????? 4分

          (Ⅱ)解:由(Ⅰ)知OA、OC1、OB兩兩垂直,以O(shè)為原點,建立如圖空間直角坐標(biāo)系,則,,,.則,.?????????????????????????????????????????????????????????????????????????????????????????????? 5分

          設(shè)是平面ABC的一個法向量,

          ,則.設(shè)A1到平面ABC的距離為d.

          .??????????????????????????????????????????????????????????????????????????? 8分

          (Ⅲ)解:由(Ⅱ)知平面ABC的一個法向量是,又平面ACC1的一個法向量.   9分

          .???????????????????????????????????????????????????????????? 11分

          ∴二面角B-AC-C1的余弦值是.???????????????????????????????????????????????????????????????? 12分

           

          20.解:(Ⅰ),對稱軸方程為,故函數(shù)在[0,1]上為增函數(shù),∴.?????????????????????????????????????????????????????????????????????????????????????? 2分

          當(dāng)時,.??????????????????????????????????????????????????????????????????????????????????????????? 3分

                      ①

                 ②

          ②-①得,即,?????????????????????????????????????????????????? 4分

          ,∴數(shù)列是以為首項,為公比的等比數(shù)列.

          ,∴.?????????????????????????????????????????????????? 6分

          (Ⅱ)∵,∴

          ???????????????????????????????????????????????????????? 7分

          可知:當(dāng)時,;當(dāng)時,;當(dāng)時,

          ?????????????????????????????????????????????????????????????????????????? 10分

          可知存在正整數(shù)或6,使得對于任意的正整數(shù)n,都有成立.???????????? 12分

           

          21.解:(Ⅰ)設(shè),,

          ,,

          ,

          .∵

          ,∴,∴.??????????????????????????????????????????????????????????????? 2分

          則N(c,0),M(0,c),所以,

          ,則

          ∴橢圓的方程為.??????????????????????????????????????????????????????????????????????????????? 4分

          (Ⅱ)∵圓O與直線l相切,則,即,????????????????????????????????? 5分

          消去y得

          ∵直線l與橢圓交于兩個不同點,設(shè),

          ,

          ,,???????????????????????????????????????????????????????????????? 7分

          ,

          ,,.?????????????????? 8分

          .???????????????????????????????????????? 9分

          (或).

          設(shè),則,,,

          ,則

          時單調(diào)遞增,????????????????????????????????????????????????????????????????????????? 11分

          ∴S關(guān)于μ在區(qū)間單調(diào)遞增,,,

          .??????????????????????????????????????????????????????????????????????????????????????????????????? 12分

          (或

          ∴S關(guān)于u在區(qū)間單調(diào)遞增,?????????????????????????????????????????????????????????????????????? 11分

          ,,.)????????????????????????????????????????????????????????? 12分

           

          22.解:(Ⅰ)因為,則,     1分

          當(dāng)時,;當(dāng)時,

          上單調(diào)遞增;在上單調(diào)遞減,

          ∴函數(shù)處取得極大值.????????????????????????????????????????????????????????????????????? 2分

          ∵函數(shù)在區(qū)間(其中)上存在極值,

          解得.????????????????????????????????????????????????????????????????????????????????? 3分

          (Ⅱ)不等式,即為,?????????????????????????????????????????? 4分

          ,∴,??????? 5分

          ,則,∵,∴,上遞增,

          ,從而,故上也單調(diào)遞增,

          ,

          .???????????????????????????????????????????????????????????????????????????????????????????????????????????? 7分

          (Ⅲ)由(Ⅱ)知:恒成立,即,??????????? 8分

          ,????????????????????????????????????????????????????? 9分

          ,

          ,

          ,

          ………

          ,?????????????????????????????????????????????????????????????????????????????????? 10分

          疊加得:

          .???????????????????????????????????????????????????????????????????????? 12分

          ,

          .????????????????????????????????????????????????????????????????????????? 14分

           

           

           

           

           

           

           

           

           

           


          同步練習(xí)冊答案