日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 22. 查看更多

           

          題目列表(包括答案和解析)

          (本小題滿分14分)

          已知函數(shù)

          (1)證明:

          (2)若數(shù)列的通項公式為,求數(shù)列 的前項和;w.w.w.k.s.5.u.c.o.m    

          (3)設數(shù)列滿足:,設,

          若(2)中的滿足對任意不小于2的正整數(shù),恒成立,

          試求的最大值。

          查看答案和解析>>

          (本小題滿分14分)已知,點軸上,點軸的正半軸,點在直線上,且滿足. w.w.w.k.s.5.u.c.o.m    

          (Ⅰ)當點軸上移動時,求動點的軌跡方程;

          (Ⅱ)過的直線與軌跡交于、兩點,又過、作軌跡的切線、,當,求直線的方程.

          查看答案和解析>>

          (本小題滿分14分)設函數(shù)

           (1)求函數(shù)的單調區(qū)間;

           (2)若當時,不等式恒成立,求實數(shù)的取值范圍;w.w.w.k.s.5.u.c.o.m    

           (3)若關于的方程在區(qū)間上恰好有兩個相異的實根,求實數(shù)的取值范圍。

          查看答案和解析>>

          (本小題滿分14分)

          已知,其中是自然常數(shù),

          (1)討論時, 的單調性、極值;w.w.w.k.s.5.u.c.o.m    

          (2)求證:在(1)的條件下,;

          (3)是否存在實數(shù),使的最小值是3,若存在,求出的值;若不存在,說明理由.

          查看答案和解析>>

          (本小題滿分14分)

          設數(shù)列的前項和為,對任意的正整數(shù),都有成立,記

          (I)求數(shù)列的通項公式;

          (II)記,設數(shù)列的前項和為,求證:對任意正整數(shù)都有

          (III)設數(shù)列的前項和為。已知正實數(shù)滿足:對任意正整數(shù)恒成立,求的最小值。

          查看答案和解析>>

           

          一、選擇題:本大題共12個小題,每小題5分,共60分.

          1-5:DBADC; 6-10:BACDC; 11-12: BC.

          二、填空題:本大題共4個小題,每小題4分,共16分.

          13.3; 14.-4; 15.1; 16.

          三、解答題:本大題共6個小題,共74分.解答要寫出文字說明,證明過程或演算步驟.

           

          17.解:(Ⅰ)∵l1∥l2,

          ,????????????????????????????????????????????????????????????????????????????????????????? 3分

          ,

          .????????????????????????????????????????????????????????????????????????????????? 6分

          (Ⅱ)∵,

          ,∴,當且僅當時取"=".??????????? 8分

          ,∴,?????????????????????????????????????????? 10分

          ,當且僅當時。ⅲ剑ⅲ

          故△ABC面積取最大值為.??????????????????????????????????????????????????????????????????????????? 12分

           

          18.解:(Ⅰ)ξ=3表示取出的三個球中數(shù)字最大者為3.

          ①三次取球均出現(xiàn)最大數(shù)字為3的概率;??????????????????????????????????????? 1分

          ②三次取球中有2次出現(xiàn)最大數(shù)字3的概率;???????????????????? 3分

          ③三次取球中僅有1次出現(xiàn)最大數(shù)字3的概率.????????????????? 5分

          ∴P(ξ=3)=P1+P2+P3=.?????????????????????????????????????????????????????????????????????????????? 6分

          (Ⅱ)在ξ=k時, 利用(Ⅰ)的原理可知:

          (k=1、2、3、4).???????? 8分

          則ξ的概率分布列為:

          ξ

          1

          2

          3

          4

          P

          ??????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????? 10分

          ∴ξ的數(shù)學期望Eξ=1×+2×+3×+4× = .???????????????????????????????? 12分

           

          19.(Ⅰ)證明:∵四邊形AA1C1C是菱形,∴AA1=A1C1=C1C=CA=1,∴△AA1B是等邊三角形,設O是AA1的中點,連接BO,則BO⊥AA1. 2分

          ∵側面ABB1A1⊥AA1C1C,∴BO⊥平面AA1C1C,菱形AA1C1C面積為,知C到AA1的距離為,,∴△AA1C1是等邊三角形,且C1O⊥AA1,又C1O∩BO=O.

          ∴AA1⊥面BOC1,又BC1Ì面BOC1.∴AA1⊥BC1.???????????????????????????????????????????? 4分

          (Ⅱ)解:由(Ⅰ)知OA、OC1、OB兩兩垂直,以O為原點,建立如圖空間直角坐標系,則,,,.則,,,.?????????????????????????????????????????????????????????????????????????????????????????????? 5分

          是平面ABC的一個法向量,

          ,則.設A1到平面ABC的距離為d.

          .??????????????????????????????????????????????????????????????????????????? 8分

          (Ⅲ)解:由(Ⅱ)知平面ABC的一個法向量是,又平面ACC1的一個法向量.   9分

          .???????????????????????????????????????????????????????????? 11分

          ∴二面角B-AC-C1的余弦值是.???????????????????????????????????????????????????????????????? 12分

           

          20.解:(Ⅰ),對稱軸方程為,故函數(shù)在[0,1]上為增函數(shù),∴.?????????????????????????????????????????????????????????????????????????????????????? 2分

          時,.??????????????????????????????????????????????????????????????????????????????????????????? 3分

                      ①

                 ②

          ②-①得,即,?????????????????????????????????????????????????? 4分

          ,∴數(shù)列是以為首項,為公比的等比數(shù)列.

          ,∴.?????????????????????????????????????????????????? 6分

          (Ⅱ)∵,∴

          ???????????????????????????????????????????????????????? 7分

          可知:當時,;當時,;當時,

          ?????????????????????????????????????????????????????????????????????????? 10分

          可知存在正整數(shù)或6,使得對于任意的正整數(shù)n,都有成立.???????????? 12分

           

          21.解:(Ⅰ)設,,

          ,,

          ,,

          .∵,

          ,∴,∴.??????????????????????????????????????????????????????????????? 2分

          則N(c,0),M(0,c),所以

          ,則,

          ∴橢圓的方程為.??????????????????????????????????????????????????????????????????????????????? 4分

          (Ⅱ)∵圓O與直線l相切,則,即,????????????????????????????????? 5分

          消去y得

          ∵直線l與橢圓交于兩個不同點,設,

          ,,???????????????????????????????????????????????????????????????? 7分

          ,

          ,,.?????????????????? 8分

          .???????????????????????????????????????? 9分

          (或).

          ,則,,,

          ,則,

          時單調遞增,????????????????????????????????????????????????????????????????????????? 11分

          ∴S關于μ在區(qū)間單調遞增,,

          .??????????????????????????????????????????????????????????????????????????????????????????????????? 12分

          (或

          ∴S關于u在區(qū)間單調遞增,?????????????????????????????????????????????????????????????????????? 11分

          ,.)????????????????????????????????????????????????????????? 12分

           

          22.解:(Ⅰ)因為,,則,     1分

          時,;當時,

          上單調遞增;在上單調遞減,

          ∴函數(shù)處取得極大值.????????????????????????????????????????????????????????????????????? 2分

          ∵函數(shù)在區(qū)間(其中)上存在極值,

          解得.????????????????????????????????????????????????????????????????????????????????? 3分

          (Ⅱ)不等式,即為,?????????????????????????????????????????? 4分

          ,∴,??????? 5分

          ,則,∵,∴,上遞增,

          ,從而,故上也單調遞增,

          ,

          .???????????????????????????????????????????????????????????????????????????????????????????????????????????? 7分

          (Ⅲ)由(Ⅱ)知:恒成立,即,??????????? 8分

          ,????????????????????????????????????????????????????? 9分

          ,

          ,

          ………

          ,?????????????????????????????????????????????????????????????????????????????????? 10分

          疊加得:

          .???????????????????????????????????????????????????????????????????????? 12分

          ,

          .????????????????????????????????????????????????????????????????????????? 14分

           

           

           

           

           

           

           

           

           

           


          同步練習冊答案