日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 即最大值為.且最小值為0.則 查看更多

           

          題目列表(包括答案和解析)

          已知函數(shù)f(x)=ex-ax,其中a>0.

          (1)若對一切x∈R,f(x) 1恒成立,求a的取值集合;

          (2)在函數(shù)f(x)的圖像上去定點(diǎn)A(x1, f(x1)),B(x2, f(x2))(x1<x2),記直線AB的斜率為k,證明:存在x0∈(x1,x2),使恒成立.

          【解析】解:.

          當(dāng)時(shí)單調(diào)遞減;當(dāng)時(shí)單調(diào)遞增,故當(dāng)時(shí),取最小值

          于是對一切恒成立,當(dāng)且僅當(dāng).       、

          當(dāng)時(shí),單調(diào)遞增;當(dāng)時(shí),單調(diào)遞減.

          故當(dāng)時(shí),取最大值.因此,當(dāng)且僅當(dāng)時(shí),①式成立.

          綜上所述,的取值集合為.

          (Ⅱ)由題意知,

          ,則.當(dāng)時(shí),單調(diào)遞減;當(dāng)時(shí),單調(diào)遞增.故當(dāng),

          從而

          所以因?yàn)楹瘮?shù)在區(qū)間上的圖像是連續(xù)不斷的一條曲線,所以存在使成立.

          【點(diǎn)評】本題考查利用導(dǎo)函數(shù)研究函數(shù)單調(diào)性、最值、不等式恒成立問題等,考查運(yùn)算能力,考查分類討論思想、函數(shù)與方程思想等數(shù)學(xué)方法.第一問利用導(dǎo)函數(shù)法求出取最小值對一切x∈R,f(x) 1恒成立轉(zhuǎn)化為從而得出求a的取值集合;第二問在假設(shè)存在的情況下進(jìn)行推理,然后把問題歸結(jié)為一個(gè)方程是否存在解的問題,通過構(gòu)造函數(shù),研究這個(gè)函數(shù)的性質(zhì)進(jìn)行分析判斷.

           

          查看答案和解析>>

          在計(jì)算機(jī)的算法語言中有一種函數(shù)[x]叫做高斯函數(shù),它表示數(shù)x的整數(shù)部分(即小于等于x的最大整數(shù),如[3.15]=3,[0.7]=0,[-2.6]=-3)設(shè)函數(shù)f(x)=
          ax
          1+ax
          (a>0,且a≠1)
          ,則函數(shù)y=[f(x)-
          1
          2
          ]+[f(-x)-
          1
          2
          ]
          的值域?yàn)椋ā 。?/div>
          A、{-1,0}
          B、{0}
          C、{-1}
          D、{-1,0,1}

          查看答案和解析>>

          在計(jì)算機(jī)的算法語言中有一種函數(shù)[x]叫做高斯函數(shù),它表示數(shù)x的整數(shù)部分(即小于等于x的最大整數(shù),如[3.15]=3,[0.7]=0,[-2.6]=-3)設(shè)函數(shù)f(x)=
          ax
          1+ax
          (a>0,且a≠1)
          ,則函數(shù)y=[f(x)-
          1
          2
          ]+[f(-x)-
          1
          2
          ]
          的值域?yàn)椋ā 。?table style="margin-left:0px;width:100%;">A.{-1,0}B.{0}C.{-1}D.{-1,0,1}

          查看答案和解析>>

          已知數(shù)列是各項(xiàng)均不為0的等差數(shù)列,公差為d,為其前n項(xiàng)和,且滿足,.?dāng)?shù)列滿足,,為數(shù)列的前n項(xiàng)和.

          (1)求數(shù)列的通項(xiàng)公式和數(shù)列的前n項(xiàng)和

          (2)若對任意的,不等式恒成立,求實(shí)數(shù)的取值范圍;

          (3)是否存在正整數(shù),使得成等比數(shù)列?若存在,求出所有的值;若不存在,請說明理由.

          【解析】第一問利用在中,令n=1,n=2,

             即      

          解得,, [

          時(shí),滿足,

          第二問,①當(dāng)n為偶數(shù)時(shí),要使不等式恒成立,即需不等式恒成立.   

           ,等號在n=2時(shí)取得.

          此時(shí) 需滿足.  

          ②當(dāng)n為奇數(shù)時(shí),要使不等式恒成立,即需不等式恒成立.     

           是隨n的增大而增大, n=1時(shí)取得最小值-6.

          此時(shí) 需滿足

          第三問,

               若成等比數(shù)列,則,

          即.

          ,可得,即,

                  .

          (1)(法一)在中,令n=1,n=2,

             即      

          解得,, [

          時(shí),滿足,

          (2)①當(dāng)n為偶數(shù)時(shí),要使不等式恒成立,即需不等式恒成立.   

           ,等號在n=2時(shí)取得.

          此時(shí) 需滿足.  

          ②當(dāng)n為奇數(shù)時(shí),要使不等式恒成立,即需不等式恒成立.     

           是隨n的增大而增大, n=1時(shí)取得最小值-6.

          此時(shí) 需滿足

          綜合①、②可得的取值范圍是

          (3),

               若成等比數(shù)列,則,

          即.

          ,可得,即,

          ,且m>1,所以m=2,此時(shí)n=12.

          因此,當(dāng)且僅當(dāng)m=2, n=12時(shí),數(shù)列中的成等比數(shù)列

           

          查看答案和解析>>

          已知函數(shù)的圖象過坐標(biāo)原點(diǎn)O,且在點(diǎn)處的切線的斜率是.

          (Ⅰ)求實(shí)數(shù)的值; 

          (Ⅱ)求在區(qū)間上的最大值;

          (Ⅲ)對任意給定的正實(shí)數(shù),曲線上是否存在兩點(diǎn)P、Q,使得是以O(shè)為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在軸上?說明理由.

          【解析】第一問當(dāng)時(shí),,則

          依題意得:,即    解得

          第二問當(dāng)時(shí),,令,結(jié)合導(dǎo)數(shù)和函數(shù)之間的關(guān)系得到單調(diào)性的判定,得到極值和最值

          第三問假設(shè)曲線上存在兩點(diǎn)P、Q滿足題設(shè)要求,則點(diǎn)P、Q只能在軸兩側(cè)。

          不妨設(shè),則,顯然

          是以O(shè)為直角頂點(diǎn)的直角三角形,∴

              (*)若方程(*)有解,存在滿足題設(shè)要求的兩點(diǎn)P、Q;

          若方程(*)無解,不存在滿足題設(shè)要求的兩點(diǎn)P、Q.

          (Ⅰ)當(dāng)時(shí),,則。

          依題意得:,即    解得

          (Ⅱ)由(Ⅰ)知,

          ①當(dāng)時(shí),,令

          當(dāng)變化時(shí),的變化情況如下表:

          0

          0

          +

          0

          單調(diào)遞減

          極小值

          單調(diào)遞增

          極大值

          單調(diào)遞減

          ,。∴上的最大值為2.

          ②當(dāng)時(shí), .當(dāng)時(shí), ,最大值為0;

          當(dāng)時(shí), 上單調(diào)遞增!最大值為。

          綜上,當(dāng)時(shí),即時(shí),在區(qū)間上的最大值為2;

          當(dāng)時(shí),即時(shí),在區(qū)間上的最大值為。

          (Ⅲ)假設(shè)曲線上存在兩點(diǎn)P、Q滿足題設(shè)要求,則點(diǎn)P、Q只能在軸兩側(cè)。

          不妨設(shè),則,顯然

          是以O(shè)為直角頂點(diǎn)的直角三角形,∴

              (*)若方程(*)有解,存在滿足題設(shè)要求的兩點(diǎn)P、Q;

          若方程(*)無解,不存在滿足題設(shè)要求的兩點(diǎn)P、Q.

          ,則代入(*)式得:

          ,而此方程無解,因此。此時(shí),

          代入(*)式得:    即   (**)

           ,則

          上單調(diào)遞增,  ∵     ∴,∴的取值范圍是。

          ∴對于,方程(**)總有解,即方程(*)總有解。

          因此,對任意給定的正實(shí)數(shù),曲線上存在兩點(diǎn)P、Q,使得是以O(shè)為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在軸上

           

          查看答案和解析>>