日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 19. 查看更多

           

          題目列表(包括答案和解析)

          (本小題滿分14分)

          已知函數(shù)。

          (1)證明:

          (2)若數(shù)列的通項公式為,求數(shù)列 的前項和;w.w.w.k.s.5.u.c.o.m    

          (3)設(shè)數(shù)列滿足:,設(shè)

          若(2)中的滿足對任意不小于2的正整數(shù),恒成立,

          試求的最大值。

          查看答案和解析>>

          (本小題滿分14分)已知,點軸上,點軸的正半軸,點在直線上,且滿足. w.w.w.k.s.5.u.c.o.m    

          (Ⅰ)當(dāng)點軸上移動時,求動點的軌跡方程;

          (Ⅱ)過的直線與軌跡交于、兩點,又過、作軌跡的切線、,當(dāng),求直線的方程.

          查看答案和解析>>

          (本小題滿分14分)設(shè)函數(shù)

           (1)求函數(shù)的單調(diào)區(qū)間;

           (2)若當(dāng)時,不等式恒成立,求實數(shù)的取值范圍;w.w.w.k.s.5.u.c.o.m    

           (3)若關(guān)于的方程在區(qū)間上恰好有兩個相異的實根,求實數(shù)的取值范圍。

          查看答案和解析>>

          (本小題滿分14分)

          已知,其中是自然常數(shù),

          (1)討論時, 的單調(diào)性、極值;w.w.w.k.s.5.u.c.o.m    

          (2)求證:在(1)的條件下,;

          (3)是否存在實數(shù),使的最小值是3,若存在,求出的值;若不存在,說明理由.

          查看答案和解析>>

          (本小題滿分14分)

          設(shè)數(shù)列的前項和為,對任意的正整數(shù),都有成立,記。

          (I)求數(shù)列的通項公式;

          (II)記,設(shè)數(shù)列的前項和為,求證:對任意正整數(shù)都有

          (III)設(shè)數(shù)列的前項和為。已知正實數(shù)滿足:對任意正整數(shù)恒成立,求的最小值。

          查看答案和解析>>

          一、選擇題(本大題共8小題,每小題5分,共40分)

          1.A     2.D     3.D     4.C     5.C    6.B    7.C    8.A

          二、填空題(本大題共6小題,每小題5分,共30分)

          9.                  10.60                   11.   

          12.(1) (2)               13.1,                  14.,

          注:兩個空的填空題第一個空填對得2分,第二個空填對得3分.

          三、解答題(本大題共6小題,共80分)

          15.(本小題滿分13分)

          解:(Ⅰ)設(shè)等比數(shù)列的公比為,依題意有,    (1)

          ,將(1)代入得.所以.

          于是有                             ………………3分

          解得                             ………………6分

          是遞增的,故.                   ………………7分

          所以.                                         ………………8分

             (Ⅱ),.                     ………………10分

          故由題意可得,解得.又, …………….12分

          所以滿足條件的的最小值為13.                           ………………13分

          16. (本小題滿分13分)

          解:(Ⅰ)由,

             所以.                     …………………4分

             于是. …………7分

            

          (Ⅱ)由正弦定理可得,

               所以.                                …………………….10分

          .         ………………11分

          ,

          解得.即=7 .                                           …………13分

          17.(本小題滿分14分)

          解法一:(Ⅰ)∵正方形,∴

          又二面角是直二面角,

          ⊥平面.

          平面,

          .

          ,,是矩形,的中點,

          =,=,

          =,

          ⊥平面

          平面,故平面⊥平面          ……………………5分

           (Ⅱ)如圖,由(Ⅰ)知平面⊥平面,且交于,在平面內(nèi)作,垂足為,則⊥平面.

                  ∴∠與平面所成的角.                ……………………7分

          ∴在Rt△中,=.  

           .  

          與平面所成的角為 .                 ………………………9分

             (Ⅲ)由(Ⅱ),⊥平面.作,垂足為,連結(jié),則,

                  ∴∠為二面角的平面角.             ……………………….11分

          ∵在Rt△中,=,在Rt△中, .

          ∴在Rt△中,     ………13分

          即二面角的大小為arcsin.          ………………………………14分

           

          解法二:

          如圖,以為原點建立直角坐標(biāo)系

          (0,0,0),(0,2,0),

          (0,2,2),,0),

          ,0,0).

             (Ⅰ) =(,0),=(,,0),

                   =(0,0,2),

          ?=(,0)?(,0)=0,

           ? =(,,0)?(0,0,2)= 0.

          ,

          ⊥平面,又平面,故平面⊥平面. ……5分

             (Ⅱ)設(shè)與平面所成角為.

                  由題意可得=(,,0),=(0,2,2 ),=(,,0).

                  設(shè)平面的一個法向量為=(,,1),

                  由.

                    .

          與平面所成角的大小為.            ……………..9分

             (Ⅲ)因=(1,-1,1)是平面的一個法向量,

                  又⊥平面,平面的一個法向量=(,0,0),

                  ∴設(shè)的夾角為,得,

                  ∴二面角的大小為.      ………………………………14分

          18. (本小題滿分13分)

          解:(Ⅰ)設(shè)事件表示甲運動員射擊一次,恰好擊中9環(huán)以上(含9環(huán)),則

          .                            ……………….3分

          甲運動員射擊3次均未擊中9環(huán)以上的概率為

          .                            …………………5分

          所以甲運動員射擊3次,至少有1次擊中9環(huán)以上的概率為

          .                               ………………6分

              (Ⅱ)記乙運動員射擊1次,擊中9環(huán)以上為事件,則

                                  …………………8分

          由已知的可能取值是0,1,2.                       …………………9分

          ;

          ;

          .

          的分布列為

          0

          1

          2

          0.05

          0.35

          0.6

                                                         ………………………12分

          所以

          故所求數(shù)學(xué)期望為.                          ………………………13分

          19. (本小題滿分14分)

          解:(Ⅰ)由已知 ,故,所以直線的方程為.

                將圓心代入方程易知過圓心 .      …………………………3分

                  (Ⅱ) 當(dāng)直線軸垂直時,易知符合題意;        ………………4分

          當(dāng)直線與軸不垂直時,設(shè)直線的方程為,由于,

          所以,解得.

          故直線的方程為.        ………………8分

                  (Ⅲ)當(dāng)軸垂直時,易得,,又

          ,故. 即.                   ………………10分

          當(dāng)的斜率存在時,設(shè)直線的方程為,代入圓的方程得

          .則

          ,即,

          .又由,

          .

          .

          綜上,的值為定值,且.                …………14分

          另解一:連結(jié),延長交于點,由(Ⅰ)知.又,

          故△∽△.于是有.


          同步練習(xí)冊答案