日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (I)求證:平面, 查看更多

           

          題目列表(包括答案和解析)


          (I)求異面直線MN和CD1所成的角;
          (II)證明:EF//平面B1CD1.

          查看答案和解析>>

          在平面直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),X軸的正半軸為極軸,取與直角坐標(biāo)系相同的長(zhǎng)度單位建立極坐標(biāo)系.曲線C1的參數(shù)方程為:為參數(shù));射線C2的極坐標(biāo)方程為:,且射線C2與曲線C1的交點(diǎn)的橫坐標(biāo)為

          (I )求曲線C1的普通方程;

          (II)設(shè)A、B為曲線C1與y軸的兩個(gè)交點(diǎn),M為曲線C1上不同于A、B的任意一點(diǎn),若直線AM與MB分別與x軸交于P,Q兩點(diǎn),求證|OP|.|OQ|為定值.

           

          查看答案和解析>>

          在平面直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),X軸的正半軸為極軸,取與直角坐標(biāo)系相同的長(zhǎng)度單位建立極坐標(biāo)系.曲線C1的參數(shù)方程為:為參數(shù));射線C2的極坐標(biāo)方程為:,且射線C2與曲線C1的交點(diǎn)的橫坐標(biāo)為
          (I )求曲線C1的普通方程;
          (II)設(shè)A、B為曲線C1與y軸的兩個(gè)交點(diǎn),M為曲線C1上不同于A、B的任意一點(diǎn),若直線AM與MB分別與x軸交于P,Q兩點(diǎn),求證|OP|.|OQ|為定值.

          查看答案和解析>>

          在復(fù)平面內(nèi), 是原點(diǎn),向量對(duì)應(yīng)的復(fù)數(shù)是,=2+i。

          (Ⅰ)如果點(diǎn)A關(guān)于實(shí)軸的對(duì)稱點(diǎn)為點(diǎn)B,求向量對(duì)應(yīng)的復(fù)數(shù);

          (Ⅱ)復(fù)數(shù)對(duì)應(yīng)的點(diǎn)C,D。試判斷A、B、C、D四點(diǎn)是否在同一個(gè)圓上?并證明你的結(jié)論。

          【解析】第一問(wèn)中利用復(fù)數(shù)的概念可知得到由題意得,A(2,1)  ∴B(2,-1)   ∴  =(0,-2) ∴=-2i  ∵ (2+i)(-2i)=2-4i,      ∴  =

          第二問(wèn)中,由題意得,=(2,1)  ∴

          同理,所以A、B、C、D四點(diǎn)到原點(diǎn)O的距離相等,

          ∴A、B、C、D四點(diǎn)在以O(shè)為圓心,為半徑的圓上

          (Ⅰ)由題意得,A(2,1)  ∴B(2,-1)   ∴  =(0,-2) ∴=-2i     3分

               ∵ (2+i)(-2i)=2-4i,      ∴  =                 2分

          (Ⅱ)A、B、C、D四點(diǎn)在同一個(gè)圓上。                              2分

          證明:由題意得,=(2,1)  ∴

            同理,所以A、B、C、D四點(diǎn)到原點(diǎn)O的距離相等,

          ∴A、B、C、D四點(diǎn)在以O(shè)為圓心,為半徑的圓上

           

          查看答案和解析>>






          ,、分別為、的中點(diǎn)。
          (I)求證:平面;
          (Ⅱ)求三棱錐的體積;
          (Ⅲ)求平面與平面所成的銳二面角大小的余弦值。

          查看答案和解析>>


          同步練習(xí)冊(cè)答案