日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 18. 20090411 查看更多

           

          題目列表(包括答案和解析)

          (本小題滿分12分)

                     20個(gè)下崗職工開了50畝荒地,這些地可以種蔬菜、棉花、水稻,如果種這些農(nóng)作物每畝地所需的勞力和預(yù)計(jì)的產(chǎn)值如下:

                                                                                              

          每畝需勞力

          每畝預(yù)計(jì)產(chǎn)值

          蔬  菜

          1100元

          棉  花

          750元

          水  稻

          600元

          問怎樣安排,才能使每畝地都種上作物,所有職工都有工作,而且農(nóng)作物的預(yù)計(jì)總產(chǎn)值達(dá)到最高?

          查看答案和解析>>

          (2011•自貢三模)(本小題滿分12分>
          設(shè)平面直角坐標(biāo)中,O為原點(diǎn),N為動點(diǎn),|
          ON
          |=6,
          ON
          =
          5
          OM
          .過點(diǎn)M作MM1丄y軸于M1,過N作NN1⊥x軸于點(diǎn)N1
          OT
          =
          M1M
          +
          N1N
          ,記點(diǎn)T的軌跡為曲線C.
          (I)求曲線C的方程:
          (H)已知直線L與雙曲線C:5x2-y2=36的右支相交于P、Q兩點(diǎn)(其中點(diǎn)P在第-象限).線段OP交軌跡C于A,若
          OP
          =3
          OA
          ,S△PAQ=-26tan∠PAQ求直線L的方程.

          查看答案和解析>>

          (文) (本小題滿分12分已知函數(shù)y=4-2
          3
          sinx•cosx-2sin2x(x∈R)
          ,
          (1)求函數(shù)的值域和最小正周期;
          (2)求函數(shù)的遞減區(qū)間.

          查看答案和解析>>

          (07年福建卷理)(本小題滿分12分)在中,,

          (Ⅰ)求角的大。

          (Ⅱ)若最大邊的邊長為,求最小邊的邊長.

          查看答案和解析>>

          (07年福建卷文)(本小題滿分12分)

          如圖,正三棱柱ABC-A1B1C1的所有棱長都為2,DCC1中點(diǎn).

          (I)求證:AB1⊥平面A1BD;

          (II)求二面角A-A1D-B的大小.

          查看答案和解析>>

           

          一、選擇題:本大題共12小題,每小題5分,共60分。

          1―6AABCBD   7―12ACDCBD

          二、填空題:本大題共4小題,每小題5分,共20分。

          13.60°  14.-8  15.    16.6

          三、解答題:本大題共6小題,共70分,解答應(yīng)寫出文字說明,證明過程或演算步驟。

          17.(本小題滿分10分)

             (I)解:因?yàn)?sub>

                 由正弦定理得

                 所以

                 又

                 故   5分

             (II)由

                 故

                    10分

          18.(本小題滿分12分)

             (I)解:當(dāng)

                 故   1分

                 因?yàn)?nbsp;  當(dāng)

                 當(dāng)

                 故上單調(diào)遞減。   5分

             (II)解:由題意知上恒成立,

                 即上恒成立。   7分

                 令

                 因?yàn)?sub>   9分       

                 故上恒成立等價(jià)于

                    11分

                 解得   12分

          19.(本小題滿分12分)

             (I)證明:

                    2分

                 又

          <legend id="o5kww"></legend>
          <style id="o5kww"><abbr id="o5kww"></abbr></style>

          <strong id="o5kww"><u id="o5kww"></u></strong>
        2. <sub id="o5kww"></sub>

             (II)方法一

                 解:過O作

                

                 則O1是ABC截面圓的圓心,且BC是直徑,

                 過O作于M,則M為PA的中點(diǎn),

                 連結(jié)O1A,則四邊形MAO1O為矩形,

                    8分

                 過O作于E,連EO1­,

                 則為二面角O―AC―B的平面角   10分

                 在

                

                 在

                 所以二面角O―AC―B的大小為   12分

                 方法二

            1.        同上,   8分

                    

                    

                    

                     設(shè)面OAC的法向量為

                    

                     得

                     故

                     所以二面角O―AC―B的大小為   12分

              20.(本小題滿分12分)

                 (I)解:設(shè)次將球擊破,

                  則   5分

                 (II)解:對于方案甲,積分卡剩余點(diǎn)數(shù)

                     由已知可得

                    

                    

                    

                     故

                     故   8分

                     對于方案乙,積分卡剩余點(diǎn)數(shù)

                     由已知可得

                    

                    

                    

                    

                     故

                     故   11分

                     故

                     所以選擇方案甲積分卡剩余點(diǎn)數(shù)最多     12分

              21.(本小題滿分12分)

                     解:依題意設(shè)拋物線方程為,

                     直線

                     則的方程為

                    

                     因?yàn)?sub>

                     即

                     故

                 (I)若

                    

                     故點(diǎn)B的坐標(biāo)為

                     所以直線   5分

                 (II)聯(lián)立

                    

                     則

                     又   7分

                     故   9分

                     因?yàn)?sub>成等差數(shù)列,

                     所以

                     故

                     將代入上式得

                     。   12分

              22.(本小題滿分12分)

                 (I)解:

                     又

                     故   2分

                     而

                     當(dāng)

                     故為增函數(shù)。

                     所以的最小值為0   4分

                 (II)用數(shù)學(xué)歸納法證明:

                     ①當(dāng)

                     又

                     所以為增函數(shù),即

                     則

                     所以成立       6分

                     ②假設(shè)當(dāng)成立,

                     那么當(dāng)

                     又為增函數(shù),

                    

                     則成立。

                     由①②知,成立   8分

                 (III)證明:由(II)

                     得

                     故   10分

                     則

                    

                     所以成立   12分