日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 若. 查看更多

           

          題目列表(包括答案和解析)

          11、若α,β為第二象限的角,且sinα>sinβ則( 。

          查看答案和解析>>

          α,β∈(0,
          π
          2
          )
          cos(α-
          β
          2
          )=
          3
          2
          ,sin(
          α
          2
          -β )=-
          1
          2
          ,則cos(α+β)的值等于( 。
          A、-
          3
          2
          B、-
          1
          2
          C、
          1
          2
          D、
          3
          2

          查看答案和解析>>

          若α,β均為銳角,且cos(α+β)=sin(α-β),則tana的值為(  )
          A、2
          B、
          3
          C、1
          D、
          3
          3

          查看答案和解析>>

          6、若α,β,γ為不同的平面,m,n,l為不同的直線,則m⊥β的一個(gè)充分條件是( 。

          查看答案和解析>>

          α
          ,
          β
          是一組基底,向量
          γ
          =x•
          α
          +y•
          β
          (x,y∈R),則稱(x,y)為向量
          γ
          在基底
          α
          β
          下的坐標(biāo),現(xiàn)已知向量
          a
          在基底
          p
          =(1,-1),
          q
          =(2,1)下的坐標(biāo)為(-2,2),則
          a
          在另一組基底
          m
          =(-1,1),
          n
          =(1,2)下的坐標(biāo)為( 。
          A、(2,0)
          B、(0,-2)
          C、(-2,0)
          D、(0,2)

          查看答案和解析>>

          一、填空題:(本大題共14小題,每小題5分,共70分.)

          1.       2.1    3.-2     4.      5. (1)(2)

          6. 4    7.甲       8.    9.9      10.

          11.-2       12.       13.2       14. 2

          二、解答題:(本大題共6小題,共90分.)

          15.(本小題滿分14分)

          解:(1)∵

                  …………………………………………5分

          (2)∵

          …………………………………………7分

                   ……………………………………9分

          或7                   ………………………………14分

          16.(本小題滿分14分)

          (1)證明:E、P分別為AC、A′C的中點(diǎn),

                  EP∥A′A,又A′A平面AA′B,EP平面AA′B

                 ∴即EP∥平面A′FB                  …………………………………………5分

          (2) 證明:∵BC⊥AC,EF⊥A′E,EF∥BC

             ∴BC⊥A′E,∴BC⊥平面A′EC

               BC平面A′BC

             ∴平面A′BC⊥平面A′EC             …………………………………………9分

          (3)證明:在△A′EC中,P為A′C的中點(diǎn),∴EP⊥A′C,

            在△A′AC中,EP∥A′A,∴A′A⊥A′C

                由(2)知:BC⊥平面A′EC   又A′A平面A′EC

                ∴BC⊥AA′

                ∴A′A⊥平面A′BC                   …………………………………………14分

           

          17.(本小題滿分15分)

          解:(1)取弦的中點(diǎn)為M,連結(jié)OM

          由平面幾何知識(shí),OM=1

                             …………………………………………3分

          解得:,               ………………………………………5分

          ∵直線過F、B ,∴     …………………………………………6分

          (2)設(shè)弦的中點(diǎn)為M,連結(jié)OM

                        ……………………………………9分

          解得                       …………………………………………11分

                              …………………………………………15分

          (本題也可以利用特征三角形中的有關(guān)數(shù)據(jù)直接求得)

          18.(本小題滿分15分)

          (1)延長(zhǎng)BD、CE交于A,則AD=,AE=2

               則S△ADE= S△BDE= S△BCE=

                ∵S△APQ=,∴

                ∴             …………………………………………7分

          (2)

                    =?

          …………………………………………12分

              當(dāng),

          ,            

          …………………………………………15分

          19.(本小題滿分16分)

          解(1)證:       由  得

          上點(diǎn)處的切線為,即

          又在上點(diǎn)處切線可計(jì)算得,即

          ∴直線都相切,且切于同一點(diǎn)()      …………………5分

          (2)

                …………………7分

             ∴上遞增

             ∴當(dāng)時(shí)……………10分

          (3)

          設(shè)上式為 ,假設(shè)取正實(shí)數(shù),則?

          當(dāng)時(shí),,遞減;

          當(dāng),遞增. ……………………………………12分

                          

              

          ∴不存在正整數(shù),使得

                            …………………………………………16分

          20.(本小題滿分16分)

          解:(1)

          ,對(duì)一切恒成立

          的最小值,又 ,

                                 …………………………………………4分

          (2)這5個(gè)數(shù)中成等比且公比的三數(shù)只能為

          只能是,

                …………………………8分

          ,顯然成立             ……………………………………12分

          當(dāng)時(shí),

          使不等式成立的自然數(shù)n恰有4個(gè)的正整數(shù)p值為3

                                    ……………………………………………16分

           

           

          泰州市2008~2009學(xué)年度第二學(xué)期期初聯(lián)考

          高三數(shù)學(xué)試題參考答案

          附加題部分

          21.(選做題)(從A,B,C,D四個(gè)中選做2個(gè),每題10分,共20分.)

          A.解:(1)

          ∴AB=CD                            ……………………………………4分

          (2)由相交弦定理得

          2×1=(3+OP)(3-OP)

          ,∴               ……………………………………10分

          B.解:依題設(shè)有:     ………………………………………4分

           令,則           …………………………………………5分

                     …………………………………………7分

            ………………………………10分

          C.解:以有點(diǎn)為原點(diǎn),極軸為軸正半軸,建立平面直角坐標(biāo)系,兩坐標(biāo)系中取相同的長(zhǎng)度單位.(1),,由

          所以

          為圓的直角坐標(biāo)方程.  ……………………………………3分

          同理為圓的直角坐標(biāo)方程. ……………………………………6分

          (2)由      

          相減得過交點(diǎn)的直線的直角坐標(biāo)方程為. …………………………10分

          D.證明:(1)因?yàn)?sub>

              所以          …………………………………………4分

              (2)∵   …………………………………………6分

              同理,,……………………………………8分

              三式相加即得……………………………10分

          22.(必做題)(本小題滿分10分)

          解:(1)記“恰好選到1個(gè)曾經(jīng)參加過數(shù)學(xué)研究性學(xué)習(xí)活動(dòng)的同學(xué)”為事件的, 則其概率為                …………………………………………4分

              答:恰好選到1個(gè)曾經(jīng)參加過數(shù)學(xué)研究性學(xué)習(xí)活動(dòng)的同學(xué)的概率為

          (2)隨機(jī)變量

                                  ……………………5分

                             …………………………6分

                            ………………………………7分

          ∴隨機(jī)變量的分布列為

          2

          3

          4

          P

           

                              …………………………10分

          23.(必做題)(本小題滿分10分)

          (1),,,

          ,

                        ……………………………………3分

          (2)平面BDD1的一個(gè)法向量為

          設(shè)平面BFC1的法向量為

          得平面BFC1的一個(gè)法向量

          ∴所求的余弦值為                     ……………………………………6分

          (3)設(shè)

          ,由

          當(dāng)時(shí),

          當(dāng)時(shí),∴   ……………………………………10分

           

           


          同步練習(xí)冊(cè)答案