日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知橢圓的方程為.雙曲線的左.右焦點分別為的左.右頂點.而且的左.右頂點分別是的左.右焦點. 查看更多

           

          題目列表(包括答案和解析)

          已知橢圓的方程為,雙曲線的左、右焦點分別為的左、右頂點,而的左、右頂點分別是的左、右焦點,

          (1)求雙曲線的方程;

          (2)若直線與橢圓及雙曲線都恒有兩個不同的交點,且的兩個交點A和B滿足(其中0為原點),求k的取值范圍。

           

          查看答案和解析>>

          已知橢圓的方程為,雙曲線的左、右焦點分別為的左、右頂點,而的左、右頂點分別是的左、右焦點。

          (1)求雙曲線的方程;

          (2)若直線與橢圓及雙曲線都恒有兩個不同的交點,且L與的兩個焦點A和B滿足(其中O為原點),求的取值范圍。

           

          查看答案和解析>>

          已知橢圓的方程為,雙曲線的左、右焦點分別為的左、右頂點,而的左、右頂點分別是的左、右焦點,
          (1)求雙曲線的方程;
          (2)若直線與橢圓及雙曲線都恒有兩個不同的交點,且的兩個交點A和B滿足(其中0為原點),求k的取值范圍。

          查看答案和解析>>

          已知橢圓的方程為,雙曲線的左、右焦點分別為的左、右頂點,而的左、右頂點分別是的左、右焦點。
          (1)求雙曲線的方程;
          (2)若直線與橢圓及雙曲線都恒有兩個不同的交點,且L與的兩個焦點A和B滿足(其中O為原點),求的取值范圍。

          查看答案和解析>>

          已知橢圓的方程為,雙曲線的左、右焦點分別為的左、右頂點,而的左、右頂點分別是的左、右焦點。
          (1)求雙曲線的方程;
          (2)若直線與橢圓及雙曲線都恒有兩個不同的交點,且L與的兩個焦點A和B滿足(其中O為原點),求的取值范圍。

          查看答案和解析>>

          一、選擇題 CAADD    ABDAB   CB

          二、填空題               

          三、解答題

               

                         

                         

                         

                 的周期為,最大值為

                 ,

                    得

                   ∴的單調(diào)減區(qū)間為

          事件,表示甲以獲勝;表示乙以獲勝,、互斥,

              ∴

            

          事件,表示甲以獲勝;表示甲以獲勝, 互斥,

             延長、交于,則

                連結,并延長交延長線于,則,

                在中,為中位線,,

                又,

                 ∴

                中,,

          ,又,

          ,∴,

          為平面與平面所成二面角的平面角。

          ,

          ∴所求二面角大小為

          ,

              知,,同理,

              又

          構成以為首項,以為公比的等比數(shù)列。

          ,即

               

               

               

               

          ,且的圖象經(jīng)過點

               ∴,的兩根.

               ∴

             ∴

          要使對,不等式恒成立,

          只需即可.

          ,

          上單調(diào)遞減,在上單調(diào)遞增,在上單調(diào)遞減.

          ,,

          ,

          解得,即為的取值范圍.

          由題意知,橢圓的焦點,頂點,

               ∴雙曲線,

               ∴的方程為:

          聯(lián)立,得,

          ,,

          ,

          ,即,

          ,

          ,

          由①②得的范圍為

           

           

           

           


          同步練習冊答案