題目列表(包括答案和解析)
已知函數(shù)f(x)=ex-ax,其中a>0.
(1)若對(duì)一切x∈R,f(x) 1恒成立,求a的取值集合;
(2)在函數(shù)f(x)的圖像上去定點(diǎn)A(x1, f(x1)),B(x2, f(x2))(x1<x2),記直線AB的斜率為k,證明:存在x0∈(x1,x2),使恒成立.
【解析】解:令
.
當(dāng)時(shí)
單調(diào)遞減;當(dāng)
時(shí)
單調(diào)遞增,故當(dāng)
時(shí),
取最小值
于是對(duì)一切恒成立,當(dāng)且僅當(dāng)
. ①
令則
當(dāng)時(shí),
單調(diào)遞增;當(dāng)
時(shí),
單調(diào)遞減.
故當(dāng)時(shí),
取最大值
.因此,當(dāng)且僅當(dāng)
時(shí),①式成立.
綜上所述,的取值集合為
.
(Ⅱ)由題意知,令
則
令,則
.當(dāng)
時(shí),
單調(diào)遞減;當(dāng)
時(shí),
單調(diào)遞增.故當(dāng)
,
即
從而,
又
所以因?yàn)楹瘮?shù)
在區(qū)間
上的圖像是連續(xù)不斷的一條曲線,所以存在
使
即
成立.
【點(diǎn)評(píng)】本題考查利用導(dǎo)函數(shù)研究函數(shù)單調(diào)性、最值、不等式恒成立問(wèn)題等,考查運(yùn)算能力,考查分類(lèi)討論思想、函數(shù)與方程思想等數(shù)學(xué)方法.第一問(wèn)利用導(dǎo)函數(shù)法求出取最小值
對(duì)一切x∈R,f(x)
1恒成立轉(zhuǎn)化為
從而得出求a的取值集合;第二問(wèn)在假設(shè)存在的情況下進(jìn)行推理,然后把問(wèn)題歸結(jié)為一個(gè)方程是否存在解的問(wèn)題,通過(guò)構(gòu)造函數(shù),研究這個(gè)函數(shù)的性質(zhì)進(jìn)行分析判斷.
一、1. 2.3 3.
4.18 5.
6.55 7.
8.0 9.7 10.0或-2
11. 12.
二、13.C 14.B 15.D 16.A
三、17.解:(1);
(2);
(3)表面積S=48.
18.解:(1) ,
(2)
由,得當(dāng)
時(shí),
取得最小值-2
19.解:(1)
(2)
,①
,②
②-①,整理,得
20.解:(1),設(shè)
則
任取,
,
當(dāng)時(shí),
單調(diào)遞減;
當(dāng)時(shí),
單調(diào)遞增.
由得
的值域?yàn)?sub>
.
(2)設(shè),
則,
所以單調(diào)遞減.
(3)由的值域?yàn)椋?sub>
所以滿足題設(shè)僅需:
解得,.
21.解:(1)
又
(2)應(yīng)用第(1)小題結(jié)論,得
取倒數(shù),得
(3)由正弦定理,原題⇔△ABC中,求證:
證明:由(2)的結(jié)論得,且
均小于1,
,
(4)如得出:四邊形ABCD中,求證:且證明正確給3分;
如得出:凸n邊形A求證:
且證明正確給4分.
如能應(yīng)用到其它內(nèi)容有創(chuàng)意則給高分.
如得出:為各項(xiàng)為正數(shù)的等差數(shù)列,
,求證:
.
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com