日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 解:函數(shù)的定義域是.解得x≥4.選D. 查看更多

           

          題目列表(包括答案和解析)

          已知冪函數(shù)(p∈N)在(0,+∞)上是增函數(shù),且在定義域上是偶函數(shù).
          (1)求p的值,并寫出相應的f(x)的解析式;
          (2)對于(1)中求得的函數(shù)f(x),設函數(shù)g(x)=-qf[f(x)]+(2q-1)f(x)+1,問:是否存在實數(shù)q(q<0),使得g(x)在區(qū)間(-∞,-4]上是減函數(shù),且在區(qū)間(-4,0)(10)上是增函數(shù)?若存在,請求出來;若不存在,請說明理由.

          查看答案和解析>>

          已知冪函數(shù)數(shù)學公式(p∈N)在(0,+∞)上是增函數(shù),且在定義域上是偶函數(shù).
          (1)求p的值,并寫出相應的f(x)的解析式;
          (2)對于(1)中求得的函數(shù)f(x),設函數(shù)g(x)=-qf[f(x)]+(2q-1)f(x)+1,問:是否存在實數(shù)q(q<0),使得g(x)在區(qū)間(-∞,-4]上是減函數(shù),且在區(qū)間(-4,0)(10)上是增函數(shù)?若存在,請求出來;若不存在,請說明理由.

          查看答案和解析>>

          (理)定義:若存在常數(shù)k,使得對定義域D內(nèi)的任意兩個不同的實數(shù)x1,x2,均有:|f(x1)-f(x2)|≤k|x1-x2|成立,則稱f(x)在D上滿足利普希茨(Lipschitz)條件.
          (1)試舉出一個滿足利普希茨(Lipschitz)條件的函數(shù)及常數(shù)k的值,并加以驗證;
          (2)若函數(shù)f(x)=
          x+1
          在[1,+∞)
          上滿足利普希茨(Lipschitz)條件,求常數(shù)k的最小值;
          (3)現(xiàn)有函數(shù)f(x)=sinx,請找出所有的一次函數(shù)g(x),使得下列條件同時成立:
          ①函數(shù)g(x)滿足利普希茨(Lipschitz)條件;
          ②方程g(x)=0的根t也是方程f(
          4
          )=
          2
          sin(
          2
          -
          π
          4
          )=-
          2
          cos
          π
          4
          =-1
          ;
          ③方程f(g(x))=g(f(x))在區(qū)間[0,2π)上有且僅有一解.

          查看答案和解析>>

          已知二次函數(shù)f(x)=ax2+bx(a≠0),且f(x+1)為偶函數(shù),定義:滿足f(x)=x的實數(shù)x稱為函數(shù)f(x)的“不動點”,若函數(shù)f(x)有且僅有一個不動點.
          (1)求f(x)的解析式;
          (2)若函數(shù)g(x)=f(x)+kx2在(0,4)上是增函數(shù),求實數(shù)k的取值范圍;
          (3)是否存在區(qū)間[m,n](m<n),使得f(x)在區(qū)間[m,n]上的值域為[3m,3n]?若存在,請求出m,n的值;若不存在,請說明理由.

          查看答案和解析>>

          (1)已知函數(shù)f(x)=-x2+4(x∈(-1,2)),P、Q是f(x)圖象上的任意兩點.
          ①試求直線PQ的斜率kPQ的取值范圍;
          ②求f(x)圖象上任一點切線的斜率k的范圍;
          (2)由(1)你能得出什么結(jié)論?(只須寫出結(jié)論,不必證明),試運用這個結(jié)論解答下面的問題:已知集合MD是滿足下列性質(zhì)函數(shù)f(x)的全體:若函數(shù)f(x)的定義域為D,對任意的x1,x2∈D,(x1≠x2)有|f(x1)-f(x2)|<|x1-x2|.
          ①當D=(0,1)時,f(x)=lnx是否屬于MD,若屬于MD,給予證明,否則說明理由;
          ②當D=(0,
          3
          3
          )
          ,函數(shù)f(x)=x3+ax+b時,若f(x)∈MD,求實數(shù)a的取值范圍.

          查看答案和解析>>


          同步練習冊答案