題目列表(包括答案和解析)
如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.
(Ⅰ)證明PC⊥AD;
(Ⅱ)求二面角A-PC-D的正弦值;
(Ⅲ)設(shè)E為棱PA上的點(diǎn),滿足異面直線BE與CD所成的角為30°,求AE的長(zhǎng).
【解析】解法一:如圖,以點(diǎn)A為原點(diǎn)建立空間直角坐標(biāo)系,依題意得A(0,0,0),D(2,0,0),C(0,1,0), ,P(0,0,2).
(1)證明:易得,
于是
,所以
(2) ,
設(shè)平面PCD的法向量
,
則,即
.不防設(shè)
,可得
.可取平面PAC的法向量
于是
從而
.
所以二面角A-PC-D的正弦值為.
(3)設(shè)點(diǎn)E的坐標(biāo)為(0,0,h),其中,由此得
.
由,故
所以,,解得
,即
.
解法二:(1)證明:由,可得
,又由
,
,故
.又
,所以
.
(2)如圖,作于點(diǎn)H,連接DH.由
,
,可得
.
因此,從而
為二面角A-PC-D的平面角.在
中,
,由此得
由(1)知
,故在
中,
因此所以二面角
的正弦值為
.
(3)如圖,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012071821180638818491/SYS201207182118431693242163_ST.files/image044.png">,故過(guò)點(diǎn)B作CD的平行線必與線段AD相交,設(shè)交點(diǎn)為F,連接BE,EF. 故或其補(bǔ)角為異面直線BE與CD所成的角.由于BF∥CD,故
.在
中,
故
在中,由
,
,
可得.由余弦定理,
,
所以.
(本小題滿分14分)
如圖,已知橢圓過(guò)點(diǎn)(1,
),離心率為
,左右焦點(diǎn)分別為
.點(diǎn)
為直線
:
上且不在
軸上的任意一點(diǎn),直線
和
與橢圓的交點(diǎn)分別為
和
為坐標(biāo)原點(diǎn).
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)直線、
斜率分別為
.
(。┳C明:
(ⅱ )問(wèn)直線上是否存在一點(diǎn)
,使直線
的斜率
滿足
?若存在,求出所有滿足條件的點(diǎn)
的坐標(biāo);若不存在,說(shuō)明理由.
如圖,已知橢圓過(guò)點(diǎn)(1,
),離心率為
,左右焦點(diǎn)分別為
.點(diǎn)
為直線
:
上且不在
軸上的任意一點(diǎn),直線
和
與橢圓的交點(diǎn)分別為
和
為坐標(biāo)原點(diǎn).
(Ⅰ) 求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)直線、
斜率分別為
.
證明:
(ⅱ)問(wèn)直線上是否存在一點(diǎn)
,
使直線的斜率
滿足
?若存在,求出所有滿足條件的點(diǎn)
的坐標(biāo);若不存在,說(shuō)明理由.
如圖,已知橢圓過(guò)點(diǎn)
,離心率為
,左、右焦點(diǎn)分別為
、
.點(diǎn)
為直線
上且不在
軸上的任意一點(diǎn),直線
和
與橢圓的交點(diǎn)分別為
、
和
、
,
為坐標(biāo)原點(diǎn).設(shè)直線
、
的斜率分別為
、
.
(i)證明:;
(ii)問(wèn)直線上是否存在點(diǎn)
,使得直線
、
、
、
的斜率
、
、
、
滿足
?若存在,求出所有滿足條件的點(diǎn)
的坐標(biāo);若不存在,說(shuō)明理由.
如圖,已知橢圓過(guò)點(diǎn).
,離心率為
,左、右焦點(diǎn)分別為
、
.點(diǎn)
為直線
上且不在
軸上的任意一點(diǎn),直線
和
與橢圓的交點(diǎn)分別為
、
和
、
,
為坐標(biāo)原點(diǎn).
(I)求橢圓的標(biāo)準(zhǔn)方程;
(II)設(shè)直線、
的斜線分別為
、
. 證明:
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com