日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖可知.由于直線過(guò)點(diǎn).當(dāng)時(shí).直線是由直線繞點(diǎn)逆時(shí)針?lè)较蛐D(zhuǎn)得到. 因此.在區(qū)間上.的圖像位于函數(shù)圖像的上方. 查看更多

           

          題目列表(包括答案和解析)

          如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.

          (Ⅰ)證明PC⊥AD;

          (Ⅱ)求二面角A-PC-D的正弦值;

          (Ⅲ)設(shè)E為棱PA上的點(diǎn),滿足異面直線BE與CD所成的角為30°,求AE的長(zhǎng).

           

          【解析】解法一:如圖,以點(diǎn)A為原點(diǎn)建立空間直角坐標(biāo)系,依題意得A(0,0,0),D(2,0,0),C(0,1,0), ,P(0,0,2).

          (1)證明:易得,于是,所以

          (2) ,設(shè)平面PCD的法向量,

          ,即.不防設(shè),可得.可取平面PAC的法向量于是從而.

          所以二面角A-PC-D的正弦值為.

          (3)設(shè)點(diǎn)E的坐標(biāo)為(0,0,h),其中,由此得.

          ,故 

          所以,,解得,即.

          解法二:(1)證明:由,可得,又由,,故.又,所以.

          (2)如圖,作于點(diǎn)H,連接DH.由,,可得.

          因此,從而為二面角A-PC-D的平面角.在中,,由此得由(1)知,故在中,

          因此所以二面角的正弦值為.

          (3)如圖,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012071821180638818491/SYS201207182118431693242163_ST.files/image044.png">,故過(guò)點(diǎn)B作CD的平行線必與線段AD相交,設(shè)交點(diǎn)為F,連接BE,EF. 故或其補(bǔ)角為異面直線BE與CD所成的角.由于BF∥CD,故.在中,

          中,由,,

          可得.由余弦定理,,

          所以.

           

          查看答案和解析>>

          (本小題滿分14分)

          如圖,已知橢圓過(guò)點(diǎn)(1,),離心率為 ,左右焦點(diǎn)分別為.點(diǎn)為直線上且不在軸上的任意一點(diǎn),直線與橢圓的交點(diǎn)分別為為坐標(biāo)原點(diǎn).

          (Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

          (Ⅱ)設(shè)直線斜率分別為.

          (。┳C明:

          (ⅱ )問(wèn)直線上是否存在一點(diǎn),使直線的斜率滿足?若存在,求出所有滿足條件的點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.

           

          查看答案和解析>>

           如圖,已知橢圓過(guò)點(diǎn)(1,),離心率為 ,左右焦點(diǎn)分別為.點(diǎn)為直線上且不在軸上的任意一點(diǎn),直線與橢圓的交點(diǎn)分別為為坐標(biāo)原點(diǎn).

              (Ⅰ) 求橢圓的標(biāo)準(zhǔn)方程;

             (Ⅱ)設(shè)直線、斜率分別為

          證明:

          (ⅱ)問(wèn)直線上是否存在一點(diǎn)

          使直線的斜率

          滿足?若存在,求出所有滿足條件的點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.

           

           

          查看答案和解析>>

          如圖,已知橢圓過(guò)點(diǎn),離心率為,左、右焦點(diǎn)分別為、.點(diǎn)為直線上且不在軸上的任意一點(diǎn),直線與橢圓的交點(diǎn)分別為、為坐標(biāo)原點(diǎn).設(shè)直線、的斜率分別為

          (i)證明:;

          (ii)問(wèn)直線上是否存在點(diǎn),使得直線、、、的斜率、、滿足?若存在,求出所有滿足條件的點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.

           

          查看答案和解析>>

          如圖,已知橢圓過(guò)點(diǎn).,離心率為,左、右焦點(diǎn)分別為、.點(diǎn)為直線上且不在軸上的任意一點(diǎn),直線與橢圓的交點(diǎn)分別為、、,為坐標(biāo)原點(diǎn).

          (I)求橢圓的標(biāo)準(zhǔn)方程;

          (II)設(shè)直線、的斜線分別為、.      證明:

           

           

           

          查看答案和解析>>


          同步練習(xí)冊(cè)答案