日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 例1.求證:正弦函數(shù)沒有比2π小的正周期說明1:反證法適用的范圍:一般情況下.結(jié)論的反面比原結(jié)論更具體.更簡單的命題.如“不是 .“不可能 .“至多(少)若干個 .“存在 .“唯一 等易用反證法,已知條件很少或由已知推得的結(jié)論很少的命題易用反證法,關(guān)系不明確或難于直接證明的命題易用反證法.學生探究過程:綜合法與分析法.說明2:反證法不是證明原命題.而是證明另一問題.因此是一種間接證法.說明3:反證法導出的矛盾導出是與已知法則相矛盾.這種矛盾可分為三類:與已知條件矛盾.與已知的定義矛盾.與反設(shè)得到的結(jié)論及臨時假設(shè)自相矛盾.練習:教材P83---3,4 查看更多

           

          題目列表(包括答案和解析)

          求證:正弦函數(shù)沒有比2π小的正周期.

          查看答案和解析>>

          若存在常數(shù)L,使得對任意x1,x2∈I且x1≠x2,都有|f(x1)-f(x2)|≤L|x1-x2|,則稱函數(shù)f(x)在區(qū)間I上滿足L-條件.
          (1)求證:正弦函數(shù)f(x)=sinx在開區(qū)間(0,
          π2
          )
          上滿足L-條件;
          (2)如果存在實數(shù)M,使得|f'(x)|≤M在區(qū)間I上恒成立,那么函數(shù)f(x)在I上是否滿足L-條件?若滿足,給出證明;若不滿足,舉出反例.

          查看答案和解析>>

          若存在常數(shù)L,使得對任意x1,x2∈I且x1≠x2,都有|f(x1)-f(x2)|≤L|x1-x2|,則稱函數(shù)f(x)在區(qū)間I上滿足L-條件.
          (1)求證:正弦函數(shù)f(x)=sinx在開區(qū)間數(shù)學公式上滿足L-條件;
          (2)如果存在實數(shù)M,使得|f'(x)|≤M在區(qū)間I上恒成立,那么函數(shù)f(x)在I上是否滿足L-條件?若滿足,給出證明;若不滿足,舉出反例.

          查看答案和解析>>

          若存在常數(shù)L,使得對任意x1,x2∈I且x1≠x2,都有|f(x1)-f(x2)|≤L|x1-x2|,則稱函數(shù)f(x)在區(qū)間I上滿足L-條件.
          (1)求證:正弦函數(shù)f(x)=sinx在開區(qū)間上滿足L-條件;
          (2)如果存在實數(shù)M,使得|f'(x)|≤M在區(qū)間I上恒成立,那么函數(shù)f(x)在I上是否滿足L-條件?若滿足,給出證明;若不滿足,舉出反例.

          查看答案和解析>>

          設(shè)函數(shù)對任意x,y,都有,<0;f(1)=-2.

          (1)求證是奇函數(shù);

          (2)試問在是否有最值?如果有求出最值;如果沒有,說明理由

          查看答案和解析>>


          同步練習冊答案