日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 查看更多

           

          題目列表(包括答案和解析)


          x 3 4 5 6
          y 2.5 3 4 4.5
          (1)請(qǐng)畫出上表數(shù)據(jù)的散點(diǎn)圖;
          (2)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程y=
          b
          x+
          a
          ;
          (3)已知該廠技改前100噸甲產(chǎn)品的生產(chǎn)能耗為90噸標(biāo)準(zhǔn)煤.試根據(jù)(2)求出的線性回歸方程,預(yù)測(cè)生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技改前降低多少噸標(biāo)準(zhǔn)煤?(參考數(shù)值:3×2.5+4×3+5×4+6×4.5=66.5)

          查看答案和解析>>

          13、.對(duì)一批學(xué)生的抽樣成績的莖葉圖如下:則□表示的原始數(shù)據(jù)為
          35

          查看答案和解析>>

          12、.若函數(shù)f(x)=x2+2(a-1)x+2在(-∞,4)上是減函數(shù),則實(shí)數(shù)a的取值范圍是
          a≤-3

          查看答案和解析>>

          .已知冪函數(shù)f(x)=xk2-2k-3(k∈N*)的圖象關(guān)于y軸對(duì)稱,且在區(qū)間(0,+∞)上是減函數(shù),
          (1)求函數(shù)f(x)的解析式;
          (2)若a>k,比較(lna)0.7與(lna)0.6的大小.

          查看答案和解析>>

          .在△ABC中,角A、B、C所對(duì)的邊分別為a、b、c,且c2=a2+b2-ab.
          (Ⅰ)求角C;
          (Ⅱ)設(shè)
          m
          =(sinA,1)
          n
          =(3,cos2A)
          ,試求
          m
          n
          的最大值.

          查看答案和解析>>

          一、填空題:(5’×11=55’)

          題號(hào)

          1

          2

          3

          4

          5

          6

          答案

          0

          (1,2)

          2

          題號(hào)

          7

          8

          9

          10

          11

           

          答案

          4

          8.3

          ②、③

           

          二、選擇題:(4’×4=16’)

          題號(hào)

          12

          13

          14

          15

          答案

          A

          C

          B

            1. 20090116

              三、解答題:(12’+14’+15’+16’+22’=79’)

              16.解:由條件,可得,故左焦點(diǎn)的坐標(biāo)為

              設(shè)為橢圓上的動(dòng)點(diǎn),由于橢圓方程為,故

              因?yàn)?sub>,所以

              ,

              由二次函數(shù)性質(zhì)可知,當(dāng)時(shí),取得最小值4.

              所以,的模的最小值為2,此時(shí)點(diǎn)坐標(biāo)為

              17.解:(1)當(dāng)時(shí),

              當(dāng)時(shí),;

              當(dāng)時(shí),;(不單獨(dú)分析時(shí)的情況不扣分)

              當(dāng)時(shí),

              (2)由(1)知:當(dāng)時(shí),集合中的元素的個(gè)數(shù)無限;

              當(dāng)時(shí),集合中的元素的個(gè)數(shù)有限,此時(shí)集合為有限集.

              因?yàn)?sub>,當(dāng)且僅當(dāng)時(shí)取等號(hào),

              所以當(dāng)時(shí),集合的元素個(gè)數(shù)最少.

              此時(shí),故集合

              18.(本題滿分15分,1小題6分,第2小題9

              解:

               

               

               

               

               

               

               

               

               

               

               

               

               

               

               

               (2)解:如圖所示.由,,則

              所以,四棱錐的體積為

              19.解:(1)根據(jù)三條規(guī)律,可知該函數(shù)為周期函數(shù),且周期為12.

              由此可得,;

              由規(guī)律②可知,,

              又當(dāng)時(shí),,

              所以,,由條件是正整數(shù),故取

                  綜上可得,符合條件.

              (2) 解法一:由條件,,可得

              ,

              ,

              因?yàn)?sub>,,所以當(dāng)時(shí),,

              ,即一年中的7,8,9,10四個(gè)月是該地區(qū)的旅游“旺季”.

              解法二:列表,用計(jì)算器可算得

              月份

              6

              7

              8

              9

              10

              11

              人數(shù)

              383

              463

              499

              482

              416

              319

              故一年中的7,8,9,10四個(gè)月是該地區(qū)的旅游“旺季”.

              20.解:(1)依條件得: 則無窮等比數(shù)列各項(xiàng)的和為:

                  

                (2)解法一:設(shè)此子數(shù)列的首項(xiàng)為,公比為,由條件得:,

              ,即    

               則 .

              所以,滿足條件的無窮等比子數(shù)列存在且唯一,它的首項(xiàng)、公比均為

              其通項(xiàng)公式為,.

              解法二:由條件,可設(shè)此子數(shù)列的首項(xiàng)為,公比為

              ………… ①

              又若,則對(duì)每一

              都有………… ②

              從①、②得;

              ;

              因而滿足條件的無窮等比子數(shù)列存在且唯一,此子數(shù)列是首項(xiàng)、公比均為無窮等比子

              數(shù)列,通項(xiàng)公式為,

              (3)以下給出若干解答供參考,評(píng)分方法參考本小題閱卷說明:

              問題一:是否存在數(shù)列的兩個(gè)不同的無窮等比子數(shù)列,使得它們各項(xiàng)的和互為倒數(shù)?若存在,求出所有滿足條件的子數(shù)列;若不存在,說明理由.

              解:假設(shè)存在原數(shù)列的兩個(gè)不同的無窮等比子數(shù)列,使它們的各項(xiàng)和之積為1。設(shè)這兩個(gè)子數(shù)列的首項(xiàng)、公比分別為,其中,則

              因?yàn)榈仁阶筮吇驗(yàn)榕紨?shù),或?yàn)橐粋(gè)分?jǐn)?shù),而等式右邊為兩個(gè)奇數(shù)的乘積,還是一個(gè)奇數(shù)。故等式不可能成立。所以這樣的兩個(gè)子數(shù)列不存在。

              【以上解答屬于層級(jí)3,可得設(shè)計(jì)分4分,解答分6分】

              問題二:是否存在數(shù)列的兩個(gè)不同的無窮等比子數(shù)列,使得它們各項(xiàng)的和相等?若存在,求出所有滿足條件的子數(shù)列;若不存在,說明理由.

              解:假設(shè)存在原數(shù)列的兩個(gè)不同的無窮等比子數(shù)列,使它們的各項(xiàng)和相等。設(shè)這兩個(gè)子數(shù)列的首項(xiàng)、公比分別為,其中,則

              ………… ①

              ,則①,矛盾;若,則①

              ,矛盾;故必有,不妨設(shè),則

              ………… ②

              1當(dāng)時(shí),②,等式左邊是偶數(shù),

              右邊是奇數(shù),矛盾;

              2當(dāng)時(shí),②

              ,

              兩個(gè)等式的左、右端的奇偶性均矛盾;

              綜合可得,不存在原數(shù)列的兩個(gè)不同的無窮等比子數(shù)列,使得它們的各項(xiàng)和相等。

              【以上解答屬于層級(jí)4,可得設(shè)計(jì)分5分,解答分7分】

              問題三:是否存在原數(shù)列的兩個(gè)不同的無窮等比子數(shù)列,使得其中一個(gè)數(shù)列的各項(xiàng)和等于另一個(gè)數(shù)列的各項(xiàng)和的倍?若存在,求出所有滿足條件的子數(shù)列;若不存在,說明理由.

              解:假設(shè)存在滿足條件的原數(shù)列的兩個(gè)不同的無窮等比子數(shù)列。設(shè)這兩個(gè)子數(shù)列的首項(xiàng)、公比分別為,其中,則

              ,

              顯然當(dāng)時(shí),上述等式成立。例如取,,得:

              第一個(gè)子數(shù)列:,各項(xiàng)和;第二個(gè)子數(shù)列:,

              各項(xiàng)和,有,因而存在原數(shù)列的兩個(gè)不同的無窮等比子數(shù)列,使得其中一個(gè)數(shù)列的各項(xiàng)和等于另一個(gè)數(shù)列的各項(xiàng)和的倍。

              【以上解答屬層級(jí)3,可得設(shè)計(jì)分4分,解答分6分.若進(jìn)一步分析完備性,可提高一個(gè)層級(jí)評(píng)分】

              問題四:是否存在原數(shù)列的兩個(gè)不同的無窮等比子數(shù)列,使得其中一個(gè)數(shù)列的各項(xiàng)和等于另一個(gè)數(shù)列的各項(xiàng)和的倍?并說明理由.解(略):存在。

              問題五:是否存在原數(shù)列的兩個(gè)不同的無窮等比子數(shù)列,使得其中一個(gè)數(shù)列的各項(xiàng)和等于另一個(gè)數(shù)列的各項(xiàng)和的倍?并說明理由.解(略):不存在.

              【以上問題四、問題五等都屬于層級(jí)4的問題設(shè)計(jì),可得設(shè)計(jì)分5分。解答分最高7分】

               

              <sub id="o5kww"></sub>
              <legend id="o5kww"></legend>
              <style id="o5kww"><abbr id="o5kww"></abbr></style>

              <strong id="o5kww"><u id="o5kww"></u></strong>