日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2)是否存在數(shù)列的一個無窮等比子數(shù)列.使得它各項的和為?若存在.求出所有滿足條件的子數(shù)列的通項公式,若不存在.請說明理由, 查看更多

           

          題目列表(包括答案和解析)

          從數(shù)列{an}中取出部分項,并將它們按原來的順序組成一個數(shù)列,,,…,…,稱之為數(shù)列{an}的一個子數(shù)列.設(shè)數(shù)列{an}是一個公差不為零的等差數(shù)列,且a3=6,取n1=1,n2=3.

          (Ⅰ)若a1=4,求正整數(shù)m,使,,am成等比數(shù)列;

          (Ⅱ)若a1=4,那么{an}是否存在無窮等比子數(shù)列{}?請說明理由;

          (Ⅲ)若{an}存在等比子數(shù)列,,,求整數(shù)a1的值.

          查看答案和解析>>

          (2007•奉賢區(qū)一模)已知:函數(shù)f(x)=
          x
          ax+b
          (a,b∈R,ab≠0)
          f(2)=
          2
          3
          ,f(x)=x
          有唯一的根.
          (1)求a,b的值;
          (2)數(shù)列{an}對n≥2,n∈N總有an=f(an-1),a1=1;求證{
          1
          an
          }
          為等差數(shù)列,并求出{an}的通項公式.
          (3)是否存在這樣的數(shù)列{bn}滿足:{bn}為{an}的子數(shù)列(即{bn}中的每一項都是{an}的項)且{bn}為無窮等比數(shù)列,它的各項和為
          1
          2
          .若存在,找出一個符合條件的數(shù)列{bn},寫出它的通項公式;若不存在,說明理由.

          查看答案和解析>>

          對于數(shù)列{xn},從中選取若干項,不改變它們在原來數(shù)列中的先后次序,得到的數(shù)列稱為是原來數(shù)列的一個子數(shù)列.某同學在學習了這一個概念之后,打算研究首項為正整數(shù)a,公比為正整數(shù)q(q>0)的無窮等比數(shù)列{an}的子數(shù)列問題.為此,他任取了其中三項ak,am,an(k<m<n).
          (1)若ak,am,an(k<m<n)成等比數(shù)列,求k,m,n之間滿足的等量關(guān)系;
          (2)他猜想:“在上述數(shù)列{an}中存在一個子數(shù)列{bn}是等差數(shù)列”,為此,他研究了ak+an與2an的大小關(guān)系,請你根據(jù)該同學的研究結(jié)果來判斷上述猜想是否正確;
          (3)他又想:在首項為正整數(shù)a,公差為正整數(shù)d的無窮等差數(shù)列中是否存在成等比數(shù)列的子數(shù)列?請你就此問題寫出一個正確命題,并加以證明.

          查看答案和解析>>

          定義:將一個數(shù)列中部分項按原來的先后次序排列所成的一個新數(shù)列稱為原數(shù)列的一個子數(shù)列.
          已知無窮等比數(shù)列{an}的首項、公比均為數(shù)學公式
          (1)試求無窮等比子數(shù)列{a3k-1}(k∈N*)各項的和;
          (2)是否存在數(shù)列{an}的一個無窮等比子數(shù)列,使得它各項的和為數(shù)學公式?若存在,求出滿足條件的子數(shù)列的通項公式;若不存在,請說明理由;
          (3)試設(shè)計一個數(shù)學問題,研究:是否存在數(shù)列{an}的兩個不同的無窮等比子數(shù)列,使得其各項和之間滿足某種關(guān)系.請寫出你的問題以及問題的研究過程和研究結(jié)論.

          查看答案和解析>>

          定義:將一個數(shù)列中部分項按原來的先后次序排列所成的一個新數(shù)列稱為原數(shù)列的一個子數(shù)列.
          已知無窮等比數(shù)列{an}的首項、公比均為
          1
          2

          (1)試求無窮等比子數(shù)列{a3k-1}(k∈N*)各項的和;
          (2)是否存在數(shù)列{an}的一個無窮等比子數(shù)列,使得它各項的和為
          1
          7
          ?若存在,求出滿足條件的子數(shù)列的通項公式;若不存在,請說明理由;
          (3)試設(shè)計一個數(shù)學問題,研究:是否存在數(shù)列{an}的兩個不同的無窮等比子數(shù)列,使得其各項和之間滿足某種關(guān)系.請寫出你的問題以及問題的研究過程和研究結(jié)論.

          查看答案和解析>>

          一、填空題:(5’×11=55’)

          題號

          1

          2

          3

          4

          5

          6

          答案

          0

          (1,2)

          2

          題號

          7

          8

          9

          10

          11

           

          答案

          4

          8.3

          ②、③

           

          二、選擇題:(4’×4=16’)

          題號

          12

          13

          14

            1. 20090116

              答案

              A

              C

              B

              B

              三、解答題:(12’+14’+15’+16’+22’=79’)

              16.(理)解:設(shè)為橢圓上的動點,由于橢圓方程為,故

              因為,所以

                  推出

              依題意可知,當時,取得最小值.而,

              故有,解得

              又點在橢圓的長軸上,即.故實數(shù)的取值范圍是

              17.解:(1)當時,;

              時,;

              時,;(不單獨分析時的情況不扣分)

              時,

              (2)由(1)知:當時,集合中的元素的個數(shù)無限;

              時,集合中的元素的個數(shù)有限,此時集合為有限集.

              因為,當且僅當時取等號,

              所以當時,集合的元素個數(shù)最少.

              此時,故集合

              18.(本題滿分15分,1小題7分,第2小題8

              解:(1)如圖,建立空間直角坐標系.不妨設(shè)

              依題意,可得點的坐標,,

                  于是,,

                 由,則異面直線所成角的

              大小為

              (2)解:連結(jié). 由,

              的中點,得;

              ,,得

              ,因此

              由直三棱柱的體積為.可得

              所以,四棱錐的體積為

              19.解:(1)根據(jù)三條規(guī)律,可知該函數(shù)為周期函數(shù),且周期為12.

              由此可得,;

              由規(guī)律②可知,

              ;

              又當時,,

              所以,,由條件是正整數(shù),故取

                  綜上可得,符合條件.

              (2) 解法一:由條件,,可得

              ,

              ,

              因為,,所以當時,,

              ,即一年中的7,8,9,10四個月是該地區(qū)的旅游“旺季”.

              解法二:列表,用計算器可算得

              月份

              6

              7

              8

              9

              10

              11

              人數(shù)

              383

              463

              499

              482

              416

              319

              故一年中的7,8,9,10四個月是該地區(qū)的旅游“旺季”.

              20.解:(1)依條件得: 則無窮等比數(shù)列各項的和為:

                   ;

                (2)解法一:設(shè)此子數(shù)列的首項為,公比為,由條件得:

              ,即    

               則 .

              所以,滿足條件的無窮等比子數(shù)列存在且唯一,它的首項、公比均為,

              其通項公式為,.

              解法二:由條件,可設(shè)此子數(shù)列的首項為,公比為

              ………… ①

              又若,則對每一

              都有………… ②

              從①、②得

              ;

              因而滿足條件的無窮等比子數(shù)列存在且唯一,此子數(shù)列是首項、公比均為無窮等比子

              數(shù)列,通項公式為,

              (3)以下給出若干解答供參考,評分方法參考本小題閱卷說明:

              問題一:是否存在數(shù)列的兩個不同的無窮等比子數(shù)列,使得它們各項的和互為倒數(shù)?若存在,求出所有滿足條件的子數(shù)列;若不存在,說明理由.

              解:假設(shè)存在原數(shù)列的兩個不同的無窮等比子數(shù)列,使它們的各項和之積為1。設(shè)這兩個子數(shù)列的首項、公比分別為,其中,則

              ,

              因為等式左邊或為偶數(shù),或為一個分數(shù),而等式右邊為兩個奇數(shù)的乘積,還是一個奇數(shù)。故等式不可能成立。所以這樣的兩個子數(shù)列不存在。

              【以上解答屬于層級3,可得設(shè)計分4分,解答分6分】

              問題二:是否存在數(shù)列的兩個不同的無窮等比子數(shù)列,使得它們各項的和相等?若存在,求出所有滿足條件的子數(shù)列;若不存在,說明理由.

              解:假設(shè)存在原數(shù)列的兩個不同的無窮等比子數(shù)列,使它們的各項和相等。設(shè)這兩個子數(shù)列的首項、公比分別為,其中,則

              ………… ①

              ,則①,矛盾;若,則①

              ,矛盾;故必有,不妨設(shè),則

              ………… ②

              1時,②,等式左邊是偶數(shù),

              右邊是奇數(shù),矛盾;

              2時,②

              兩個等式的左、右端的奇偶性均矛盾;

              綜合可得,不存在原數(shù)列的兩個不同的無窮等比子數(shù)列,使得它們的各項和相等。

              【以上解答屬于層級4,可得設(shè)計分5分,解答分7分】

              問題三:是否存在原數(shù)列的兩個不同的無窮等比子數(shù)列,使得其中一個數(shù)列的各項和等于另一個數(shù)列的各項和的倍?若存在,求出所有滿足條件的子數(shù)列;若不存在,說明理由.

              解:假設(shè)存在滿足條件的原數(shù)列的兩個不同的無窮等比子數(shù)列。設(shè)這兩個子數(shù)列的首項、公比分別為,其中,則

              ,

              顯然當時,上述等式成立。例如取,,得:

              第一個子數(shù)列:,各項和;第二個子數(shù)列:,

              各項和,有,因而存在原數(shù)列的兩個不同的無窮等比子數(shù)列,使得其中一個數(shù)列的各項和等于另一個數(shù)列的各項和的倍。

              【以上解答屬層級3,可得設(shè)計分4分,解答分6分.若進一步分析完備性,可提高一個層級評分】

              問題四:是否存在原數(shù)列的兩個不同的無窮等比子數(shù)列,使得其中一個數(shù)列的各項和等于另一個數(shù)列的各項和的倍?并說明理由.解(略):存在。

              問題五:是否存在原數(shù)列的兩個不同的無窮等比子數(shù)列,使得其中一個數(shù)列的各項和等于另一個數(shù)列的各項和的倍?并說明理由.解(略):不存在.

              【以上問題四、問題五等都屬于層級4的問題設(shè)計,可得設(shè)計分5分。解答分最高7分】

               

              <sub id="o5kww"></sub>
              <legend id="o5kww"></legend>
              <style id="o5kww"><abbr id="o5kww"></abbr></style>

              <strong id="o5kww"><u id="o5kww"></u></strong>