日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 17.在奧運(yùn)會(huì)射箭決賽中.參賽號(hào)碼為1~4號(hào)的四名射箭運(yùn)動(dòng)員參加射箭比賽. (Ⅰ)通過(guò)抽簽將他們安排到1~4號(hào)靶位.試求恰有兩名運(yùn)動(dòng)員所抽靶位號(hào)與其參賽號(hào)碼相同的概率, 查看更多

           

          題目列表(包括答案和解析)

          (2011•自貢三模)(本小題滿分12分>
          設(shè)平面直角坐標(biāo)中,O為原點(diǎn),N為動(dòng)點(diǎn),|
          ON
          |=6,
          ON
          =
          5
          OM
          .過(guò)點(diǎn)M作MM1丄y軸于M1,過(guò)N作NN1⊥x軸于點(diǎn)N1,
          OT
          =
          M1M
          +
          N1N
          ,記點(diǎn)T的軌跡為曲線C.
          (I)求曲線C的方程:
          (H)已知直線L與雙曲線C:5x2-y2=36的右支相交于P、Q兩點(diǎn)(其中點(diǎn)P在第-象限).線段OP交軌跡C于A,若
          OP
          =3
          OA
          ,S△PAQ=-26tan∠PAQ求直線L的方程.

          查看答案和解析>>

          (文) (本小題滿分12分已知函數(shù)y=4-2
          3
          sinx•cosx-2sin2x(x∈R)
          ,
          (1)求函數(shù)的值域和最小正周期;
          (2)求函數(shù)的遞減區(qū)間.

          查看答案和解析>>

          (07年福建卷理)(本小題滿分12分)在中,,

          (Ⅰ)求角的大小;

          (Ⅱ)若最大邊的邊長(zhǎng)為,求最小邊的邊長(zhǎng).

          查看答案和解析>>

          (07年福建卷文)(本小題滿分12分)

          設(shè)函數(shù)f(x)=tx2+2t2x+t-1(x∈R,t>0).

          (I)求f (x)的最小值h(t);

          (II)若h(t)<-2t+m對(duì)t∈(0,2)恒成立,求實(shí)數(shù)m的取值范圍.

          查看答案和解析>>

          (07年福建卷文)(本小題滿分12分)

          如圖,正三棱柱ABC-A1B1C1的所有棱長(zhǎng)都為2,DCC1中點(diǎn).

          (I)求證:AB1⊥平面A1BD;

          (II)求二面角A-A1D-B的大小.

          查看答案和解析>>

           

          1-15CBDAC CDB   0   5   100  [3.9]   垂直  2或8  

          16.⑴ ∵ ,……………………………… 2分

          又∵ ,∴ 為斜三角形,

          ,∴.   ……………………………………………………………… 4分

          ,∴ .  …………………………………………………… 6分

          ⑵∵,∴ …10分

          ,∵,∴.…………………………………12分

           

          17.(Ⅰ)從4名運(yùn)動(dòng)員中任取兩名,其靶位號(hào)與參賽號(hào)相同,有種方法,另2名運(yùn)動(dòng)員靶位號(hào)與參賽號(hào)均不相同的方法有1種,所以恰有一名運(yùn)動(dòng)員所抽靶位號(hào)與參賽號(hào)相同的概率為  ……………………………4

             (Ⅱ)①由表可知,兩人各射擊一次,都未擊中9環(huán)的概率為P=(1-0.3)(1-0.32)=0.476至少有一人命中9環(huán)的概率為p=1-0.476=0.524………………………8分

             

          所以2號(hào)射箭運(yùn)動(dòng)員的射箭水平高…………………………………12分

           

          18.證明:(Ⅰ)在梯形ABCD中,∵,

          ∴四邊形ABCD是等腰梯形,

          ,∴

          又∵平面平面ABCD,交線為AC,∴平面ACFE…………………6分

          (Ⅱ)取EF中點(diǎn)G,EB中點(diǎn)H,連結(jié)DG、GH、DH,∵DE=DF,∴平面ACFE,∴  又∵,∴又∵,∴

          是二面角B―EF―D的平面角.

          在△BDE中

          ,∴在△DGH中,

          由余弦定理得即二面角B―EF―D的大小余弦值...14分

           

           

          19.解:(1)由橢圓定義可得,可得

            

          ,,解得   (4分)

          (或解:以為直徑的圓必與橢圓有交點(diǎn),即

             (2)由,得

          解得    

              此時(shí)

          當(dāng)且僅當(dāng)m=2時(shí), (9分)

          (3)由

          設(shè)A,B兩點(diǎn)的坐標(biāo)分別為,中點(diǎn)Q的坐標(biāo)為

          ,兩式相減得

               ①

          且在橢圓內(nèi)的部分

          又由可知

              ②

          ①②兩式聯(lián)立可求得點(diǎn)Q的坐標(biāo)為

          點(diǎn)Q必在橢圓內(nèi)

           又             (14分)

           

          20.解:(1)

          ……………………………4分

          (2)

          由此猜測(cè)

          下面證明:當(dāng)時(shí),由

          當(dāng)

          當(dāng)時(shí),

          當(dāng)時(shí),

          總之在(-                (10分)

          所以當(dāng)時(shí),在(-1,0)上有唯一實(shí)數(shù)解,從而

          上有唯一實(shí)數(shù)解。

          綜上可知,.                 (14分)

           

          21.解:(1)令

             令

             由①②得           (6分)

            (2)由(1)可得

          n     

             

                ………………14

           

           


          同步練習(xí)冊(cè)答案