日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (1)若的焦點(diǎn)恰好是的上焦點(diǎn).且,過點(diǎn) 查看更多

           

          題目列表(包括答案和解析)

          從橢圓數(shù)學(xué)公式上一點(diǎn)P向x軸作垂線,垂足恰好為橢圓的左焦點(diǎn)F1,M是橢圓的右頂點(diǎn),N是橢圓的上頂點(diǎn),且數(shù)學(xué)公式
          (1)求該橢圓的離心率;
          (2)若過右焦點(diǎn)F2且不與坐標(biāo)軸垂直的直線l交橢圓C于A、B兩點(diǎn),點(diǎn)A關(guān)于x軸的對(duì)稱點(diǎn)為A1,直線A1B與x軸交于點(diǎn)R(4,0),求橢圓C的方程.

          查看答案和解析>>

          從橢圓上一點(diǎn)P向x軸作垂線,垂足恰好為橢圓的左焦點(diǎn)F1,M是橢圓的右頂點(diǎn),N是橢圓的上頂點(diǎn),且
          (1)求該橢圓的離心率;
          (2)若過右焦點(diǎn)F2且不與坐標(biāo)軸垂直的直線l交橢圓C于A、B兩點(diǎn),點(diǎn)A關(guān)于x軸的對(duì)稱點(diǎn)為A1,直線A1B與x軸交于點(diǎn)R(4,0),求橢圓C的方程.

          查看答案和解析>>

          已知直線所經(jīng)過的定點(diǎn)恰好是橢圓的一個(gè)焦點(diǎn),且橢圓上的點(diǎn)到點(diǎn)的最大距離為3.

          (Ⅰ) 求橢圓的標(biāo)準(zhǔn)方程;

               (Ⅱ) 設(shè)過點(diǎn)的直線交橢圓于、兩點(diǎn),若,求直線的斜率的取值范圍.

          查看答案和解析>>

          設(shè)橢圓的左、右焦點(diǎn)分別為,上頂點(diǎn)為,離心率為,在軸負(fù)半軸上有一點(diǎn),且

          (Ⅰ)若過三點(diǎn)的圓恰好與直線相切,求橢圓C的方程;

          (Ⅱ)在(Ⅰ)的條件下,過右焦點(diǎn)作斜率為的直線與橢圓C交于兩點(diǎn),在軸上是否存在點(diǎn),使得以為鄰邊的平行四邊形是菱形,如果存在,求出的取值范圍;如果不存在,說明理由.

           

          查看答案和解析>>

          設(shè)橢圓的左、右焦點(diǎn)分別為,上頂點(diǎn)為,離心率為,在軸負(fù)半軸上有一點(diǎn),且

          (Ⅰ)若過三點(diǎn)的圓恰好與直線相切,求橢圓C的方程;

           (Ⅱ)在(Ⅰ)的條件下,過右焦點(diǎn)作斜率為的直線與橢圓C交于兩點(diǎn),在軸上是否存在點(diǎn),使得以為鄰邊的平行四邊形是菱形?如果存在,求出的取值范圍;否則,請(qǐng)說明理由.

           

          查看答案和解析>>

          一、選擇題(5分×12=60分)   

              B  B  D  D  C  B  B  D  D  C  A  A

          二、填空題(4分x 4=16分)

          13.80  14.32  15.  16.①③

          三、解答題(12分×5+14分=74分)

          17.解:(1)2分

                  ……………………4分

                   ∴的最小正周期為 …………………6分

          (2)∵成等比數(shù)列   ∴  又

            ……………………………………4分

          又∵     ∴       ……………………………………………………10分

            ……………………………………12分

          18.解:(1)設(shè)公差成等比數(shù)列得 …………………1分

          ∴即舍去或     …………………………3分

                     ………………………………………………4分

          ………………………………………………6分

          (2) ∵               ………………………………………………7分

          …①      …………8分

           …………②       …………9分

          ①-②得:

                      

                          ………………………………………………12分

          19.解:(1)記“任取2張卡片,將卡片上的函數(shù)相加得到偶函數(shù)”為事件A,

                          ……………………………………………………4分

          (2)設(shè)符合題設(shè)條件,抽取次數(shù)恰為3的事件記為B,則

                  ………………………………………………12分

          20.解:(1)連結(jié)    為正△ …1分

                            

                                                 3分

                    

           

          即點(diǎn)的位置在線段的四等分點(diǎn)且靠近處  ………………………………………6分

          (2)過,連

          由(1)知(三垂線定理)

          為二面角的平面角……9分

             

             

          中,

          中,

          ∴二面角的大小為     ………………………………………12分

          (說明:若用空間向量解,請(qǐng)參照給分)

          21.解:(1) ……2分

          ①當(dāng)時(shí),內(nèi)是增函數(shù),故無最小值………………………3分

          ②當(dāng)時(shí),

           

           

           

           

          處取得極小值    ………………………5分

             

          由                     解得:  ∴ …………6分

          (2)由(1)知在區(qū)間上均為增函數(shù)

          ,故要在內(nèi)為增函數(shù)

                            

          必須:                或                    ………………………………………10分

                           

            ∴實(shí)數(shù)的取值范圍是:…………………12分

          22.解:(1)如圖,設(shè)為橢圓的下焦點(diǎn),連結(jié)

          …3分

            ∴ ………4分

          的離心率為

           …………………………………………………………6分

          (2)∵,∴拋物線方程為:設(shè)點(diǎn)

          點(diǎn)處拋物線的切線斜率 ……………………………………………………8分

          則切線方程為:……………………………………………………9分

          又∵過點(diǎn)  ∴  ∴  ∴

          代入橢圓方程得:    ……………………………………………………11分

            ………………13分

                            

          當(dāng)且僅當(dāng)                 即           上式取等號(hào)

                              

          ∴此時(shí)橢圓的方程為:       ………………………………………………14分

           

           

           

           


          同步練習(xí)冊(cè)答案