日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 把代入橢圓得.∴. 查看更多

           

          題目列表(包括答案和解析)

          把函數(shù)的圖象按向量平移得到函數(shù)的圖象. 

          (1)求函數(shù)的解析式; (2)若,證明:.

          【解析】本試題主要考查了函數(shù) 平抑變換和運用函數(shù)思想證明不等式。第一問中,利用設(shè)上任意一點為(x,y)則平移前對應點是(x+1,y-2)代入 ,便可以得到結(jié)論。第二問中,令,然后求導,利用最小值大于零得到。

          (1)解:設(shè)上任意一點為(x,y)則平移前對應點是(x+1,y-2)代入 得y-2=ln(x+1)-2即y=ln(x+1),所以.……4分

          (2) 證明:令,……6分

          ……8分

          ,∴,∴上單調(diào)遞增.……10分

          ,即

           

          查看答案和解析>>

          已知中心在原點O,焦點F1、F2在x軸上的橢圓E經(jīng)過點C(2,2),且拋物線的焦點為F1.

          (Ⅰ)求橢圓E的方程;

          (Ⅱ)垂直于OC的直線l與橢圓E交于A、B兩點,當以AB為直徑的圓P與y軸相切時,求直線l的方程和圓P的方程.

          【解析】本試題主要考查了橢圓的方程的求解以及直線與橢圓的位置關(guān)系的運用。第一問中,設(shè)出橢圓的方程,然后結(jié)合拋物線的焦點坐標得到,又因為,這樣可知得到。第二問中設(shè)直線l的方程為y=-x+m與橢圓聯(lián)立方程組可以得到

          ,再利用可以結(jié)合韋達定理求解得到m的值和圓p的方程。

          解:(Ⅰ)設(shè)橢圓E的方程為

          ①………………………………1分

            ②………………2分

            ③       由①、②、③得a2=12,b2=6…………3分

          所以橢圓E的方程為…………………………4分

          (Ⅱ)依題意,直線OC斜率為1,由此設(shè)直線l的方程為y=-x+m,……………5分

           代入橢圓E方程,得…………………………6分

          ………………………7分

          、………………8分

          ………………………9分

          ……………………………10分

              當m=3時,直線l方程為y=-x+3,此時,x1 +x2=4,圓心為(2,1),半徑為2,

          圓P的方程為(x-2)2+(y-1)2=4;………………………………11分

          同理,當m=-3時,直線l方程為y=-x-3,

          圓P的方程為(x+2)2+(y+1)2=4

           

          查看答案和解析>>

          已知中心在原點,焦點在軸上的橢圓的離心率為,且經(jīng)過點.

          (Ⅰ)求橢圓的方程;

          (Ⅱ)是否存過點(2,1)的直線與橢圓相交于不同的兩點,滿足?若存在,求出直線的方程;若不存在,請說明理由.

          【解析】第一問利用設(shè)橢圓的方程為,由題意得

          解得

          第二問若存在直線滿足條件的方程為,代入橢圓的方程得

          因為直線與橢圓相交于不同的兩點,設(shè)兩點的坐標分別為

          所以

          所以.解得。

          解:⑴設(shè)橢圓的方程為,由題意得

          解得,故橢圓的方程為.……………………4分

          ⑵若存在直線滿足條件的方程為,代入橢圓的方程得

          因為直線與橢圓相交于不同的兩點,設(shè)兩點的坐標分別為,

          所以

          所以

          ,

          因為,即,

          所以

          所以,解得

          因為A,B為不同的兩點,所以k=1/2.

          于是存在直線L1滿足條件,其方程為y=1/2x

           

          查看答案和解析>>

          已知中心在坐標原點,焦點在軸上的橢圓C;其長軸長等于4,離心率為

          (Ⅰ)求橢圓C的標準方程;

          (Ⅱ)若點(0,1), 問是否存在直線與橢圓交于兩點,且?若存在,求出的取值范圍,若不存在,請說明理由.

          【解析】本試題主要考查了橢圓的方程的求解,直線與橢圓的位置關(guān)系的運用。

          第一問中,可設(shè)橢圓的標準方程為 

          則由長軸長等于4,即2a=4,所以a=2.又,所以,

          又由于 

          所求橢圓C的標準方程為

          第二問中,

          假設(shè)存在這樣的直線,設(shè),MN的中點為

           因為|ME|=|NE|所以MNEF所以

          (i)其中若時,則K=0,顯然直線符合題意;

          (ii)下面僅考慮情形:

          ,得,

          ,得

          代入1,2式中得到范圍。

          (Ⅰ) 可設(shè)橢圓的標準方程為 

          則由長軸長等于4,即2a=4,所以a=2.又,所以,

          又由于 

          所求橢圓C的標準方程為

           (Ⅱ) 假設(shè)存在這樣的直線,設(shè),MN的中點為

           因為|ME|=|NE|所以MNEF所以

          (i)其中若時,則K=0,顯然直線符合題意;

          (ii)下面僅考慮情形:

          ,得,

          ,得……②  ……………………9分

          代入①式得,解得………………………………………12分

          代入②式得,得

          綜上(i)(ii)可知,存在這樣的直線,其斜率k的取值范圍是

           

          查看答案和解析>>

          已知正三角形ABC的頂點A(1,1),B(1,3),頂點C在第一象限,若點(x,y)在△ABC內(nèi)部,則z=-x+y的取值范圍是

          (A)(1-,2)     (B)(0,2)     (C)(-1,2)   (D)(0,1+)

          【解析】    做出三角形的區(qū)域如圖,由圖象可知當直線經(jīng)過點B時,截距最大,此時,當直線經(jīng)過點C時,直線截距最小.因為軸,所以,三角形的邊長為2,設(shè),則,解得,因為頂點C在第一象限,所以,即代入直線,所以的取值范圍是,選A.

           

          查看答案和解析>>


          同步練習冊答案