日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 上.過作交的延長線于點.那 查看更多

           

          題目列表(包括答案和解析)

          數(shù)學課上,張老師出示了問題:如圖1,△ABC是等邊三角形,點D是邊BC的中點.,且DE交△ABC外角的平分線CE于點E,求證:AD=DE.
          經(jīng)過思考,小明展示了一種正確的解題思路:取AB的中點M,連接MD,則△BMD是等邊三角形,易證△AMD≌△DCE,所以AD=DE.在此基礎上,同學們作了進一步的研究:

          (1)小穎提出:如圖2,如果把“點D是邊BC的中點”改為“點D是邊BC上(除B,C外)的任意一點”,其它條件不變,那么結論“AD=DE”仍然成立,你認為小穎的觀點正確嗎?如果正確,寫出證明過程;如果不正確,請說明理由;
          (2)小亮提出:如圖3,點D是BC的延長線上(除C點外)的任意一點,其他條件不變,結論“AD=DE”仍然成立.你認為小華的觀點          (填“正確”或“不正確”).

          查看答案和解析>>

          數(shù)學課上,張老師出示了問題:如圖1,△ABC是等邊三角形,點D是邊BC的中點.,且DE交△ABC外角的平分線CE于點E,求證:AD=DE.

          經(jīng)過思考,小明展示了一種正確的解題思路:取AB的中點M,連接MD,則△BMD是等邊三角形,易證△AMD≌△DCE,所以AD=DE.在此基礎上,同學們作了進一步的研究:

          (1)小穎提出:如圖2,如果把“點D是邊BC的中點”改為“點D是邊BC上(除B,C外)的任意一點”,其它條件不變,那么結論“AD=DE”仍然成立,你認為小穎的觀點正確嗎?如果正確,寫出證明過程;如果不正確,請說明理由;

          (2)小亮提出:如圖3,點D是BC的延長線上(除C點外)的任意一點,其他條件不變,結論“AD=DE”仍然成立.你認為小華的觀點          (填“正確”或“不正確”).

           

          查看答案和解析>>

          數(shù)學課上,張老師給出了問題:如圖(1),四邊形ABCD是正方形,點E是邊BC的中點,∠AEF=90°,且EF交正方形外角∠DCG的平分線CF 于點F,求證:AE=EF。
          經(jīng)過思考,小明展示了一種正確的解題思路:取AB 的中點M,連接ME,則AM=EC,易證△AME≌△ECF,所以AE=EF,在此基礎上,同學們作了進一步探究:
          (1)小穎提出:如圖(2),如果把“點E是邊BC的中點” 改為“點E是邊BC上(除B、C外)的任意一點”,其他條件不變,那么結論“AE= EF”仍然成立,你認為小穎的觀點正確嗎?如果正確,寫出證明過程;如果不正確,請說明理由;
          (2)小華提出:如圖(3),點E是BC的延長線上(除C 點外)的任意一點,其他條件不變,結論“AE=EF” 仍然成立,你認為小華的觀點正確嗎?如果正確,寫出證明過程;如果不正確,請說明理由。

          查看答案和解析>>

          數(shù)學課上,張老師出示了問題:如圖1,△ABC是等邊三角形,點D是邊BC的中點.,且DE交△ABC外角的平分線CE于點E,求證:AD=DE.
          經(jīng)過思考,小明展示了一種正確的解題思路:取AB的中點M,連接MD,則△BMD是等邊三角形,易證△AMD≌△DCE,所以AD=DE.在此基礎上,同學們作了進一步的研究:

          (1)小穎提出:如圖2,如果把“點D是邊BC的中點”改為“點D是邊BC上(除B,C外)的任意一點”,其它條件不變,那么結論“AD=DE”仍然成立,你認為小穎的觀點正確嗎?如果正確,寫出證明過程;如果不正確,請說明理由;
          (2)小亮提出:如圖3,點D是BC的延長線上(除C點外)的任意一點,其他條件不變,結論“AD=DE”仍然成立.你認為小華的觀點          (填“正確”或“不正確”).

          查看答案和解析>>

          數(shù)學課上,張老師出示了問題:如圖,四邊形ABCD是正方形,點E是邊BC的中點,∠AEF=90°,且EF交正方形外角∠DCG的平行線CF于點F,求證:AE=EF

          經(jīng)過思考,小明展示了一種正確的解題思路:取AB的中點M,連結ME,則AM=EC,易證△AME≌△ECF,所以AE=EF.

          在此基礎上,同學們作了進一步的研究:

          (1)小穎提出:如圖,如果把“點E是邊BC的中點”改為“點E是邊BC上(除B,C外)的任意一點”,其它條件不變,那么結論“AE=EF”仍然成立,你認為小穎的觀點正確嗎?如果正確,寫出證明過程;如果不正確,請說明理由;

          (2)小華提出:如圖,點E是BC的延長線上(除C點外)的任意一點,其他條件不變,結論“AE=EF”仍然成立.你認為小華的觀點正確嗎?如果正確,寫出證明過程;如果不正確,請說明理由.

          查看答案和解析>>


          同步練習冊答案