日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)在的最小值為.依題意有. 查看更多

           

          題目列表(包括答案和解析)

          本題共有(1)、(2)、(3)三個選答題,每題7分,請考生任選2題作答,滿分14分.如果多做,則以所做的前2題計分.作答時,先用2B鉛筆在答題卡上把所選題目對應(yīng)的題號涂黑,并將所選題號填入括號中.
          (1)選修4-2:矩陣與變換
          變換T1是逆時針旋轉(zhuǎn)90°的旋轉(zhuǎn)變換,對應(yīng)的變換矩陣為M1,變換T2對應(yīng)的變換矩陣是M2=
          11
          01

          (I)求點P(2,1)在T1作用下的點Q的坐標(biāo);
          (II)求函數(shù)y=x2的圖象依次在T1,T2變換的作用下所得的曲線方程.
          (2)選修4-4:極坐標(biāo)系與參數(shù)方程
          從極點O作一直線與直線l:ρcosθ=4相交于M,在OM上取一點P,使得OM•OP=12.
          (Ⅰ)求動點P的極坐標(biāo)方程;
          (Ⅱ)設(shè)R為l上的任意一點,試求RP的最小值.
          (3)選修4-5:不等式選講
          已知f(x)=|6x+a|.
          (Ⅰ)若不等式f(x)≥4的解集為{x|x≥
          1
          2
          或x≤-
          5
          6
          }
          ,求實數(shù)a的值;
          (Ⅱ)在(Ⅰ)的條件下,若f(x)+f(x-1)>b對一切實數(shù)x恒成立,求實數(shù)b的取值范圍.

          查看答案和解析>>

          本題共有(1)、(2)、(3)三個選答題,每題7分,請考生任選2題作答,滿分14分.如果多做,則以所做的前2題計分.作答時,先用2B鉛筆在答題卡上把所選題目對應(yīng)的題號涂黑,并將所選題號填入括號中.
          (1)選修4-2:矩陣與變換
          變換T1是逆時針旋轉(zhuǎn)90°的旋轉(zhuǎn)變換,對應(yīng)的變換矩陣為M1,變換T2對應(yīng)的變換矩陣是;
          (I)求點P(2,1)在T1作用下的點Q的坐標(biāo);
          (II)求函數(shù)y=x2的圖象依次在T1,T2變換的作用下所得的曲線方程.
          (2)選修4-4:極坐標(biāo)系與參數(shù)方程
          從極點O作一直線與直線l:ρcosθ=4相交于M,在OM上取一點P,使得OM•OP=12.
          (Ⅰ)求動點P的極坐標(biāo)方程;
          (Ⅱ)設(shè)R為l上的任意一點,試求RP的最小值.
          (3)選修4-5:不等式選講
          已知f(x)=|6x+a|.
          (Ⅰ)若不等式f(x)≥4的解集為,求實數(shù)a的值;
          (Ⅱ)在(Ⅰ)的條件下,若f(x)+f(x-1)>b對一切實數(shù)x恒成立,求實數(shù)b的取值范圍.

          查看答案和解析>>

          本題共有(1)、(2)、(3)三個選答題,每題7分,請考生任選2題作答,滿分14分.如果多做,則以所做的前2題計分.作答時,先用2B鉛筆在答題卡上把所選題目對應(yīng)的題號涂黑,并將所選題號填入括號中.
          (1)選修4-2:矩陣與變換
          變換T1是逆時針旋轉(zhuǎn)90°的旋轉(zhuǎn)變換,對應(yīng)的變換矩陣為M1,變換T2對應(yīng)的變換矩陣是M2=
          11
          01

          (I)求點P(2,1)在T1作用下的點Q的坐標(biāo);
          (II)求函數(shù)y=x2的圖象依次在T1,T2變換的作用下所得的曲線方程.
          (2)選修4-4:極坐標(biāo)系與參數(shù)方程
          從極點O作一直線與直線l:ρcosθ=4相交于M,在OM上取一點P,使得OM•OP=12.
          (Ⅰ)求動點P的極坐標(biāo)方程;
          (Ⅱ)設(shè)R為l上的任意一點,試求RP的最小值.
          (3)選修4-5:不等式選講
          已知f(x)=|6x+a|.
          (Ⅰ)若不等式f(x)≥4的解集為{x|x≥
          1
          2
          或x≤-
          5
          6
          }
          ,求實數(shù)a的值;
          (Ⅱ)在(Ⅰ)的條件下,若f(x)+f(x-1)>b對一切實數(shù)x恒成立,求實數(shù)b的取值范圍.

          查看答案和解析>>

          甲船由島出發(fā)向北偏東的方向作勻速直線航行,速度為海里∕小時,在甲船從島出發(fā)的同時,乙船從島正南海里處的島出發(fā),朝北偏東的方向作勻速直線航行,速度為海里∕小時。

          ⑴求出發(fā)小時時兩船相距多少海里?

          ⑴   兩船出發(fā)后多長時間相距最近?最近距離為多少海里?

          【解析】第一問中根據(jù)時間得到出發(fā)小時時兩船相距的海里為

          第二問設(shè)時間為t,則

          利用二次函數(shù)求得最值,

          解:⑴依題意有:兩船相距

          答:出發(fā)3小時時兩船相距海里                           

          ⑵兩船出發(fā)后t小時時相距最近,即

          即當(dāng)t=4時兩船最近,最近距離為海里。

           

          查看答案和解析>>

          已知函數(shù)的圖象過坐標(biāo)原點O,且在點處的切線的斜率是.

          (Ⅰ)求實數(shù)的值; 

          (Ⅱ)求在區(qū)間上的最大值;

          (Ⅲ)對任意給定的正實數(shù),曲線上是否存在兩點P、Q,使得是以O(shè)為直角頂點的直角三角形,且此三角形斜邊中點在軸上?說明理由.

          【解析】第一問當(dāng)時,,則

          依題意得:,即    解得

          第二問當(dāng)時,,令,結(jié)合導(dǎo)數(shù)和函數(shù)之間的關(guān)系得到單調(diào)性的判定,得到極值和最值

          第三問假設(shè)曲線上存在兩點P、Q滿足題設(shè)要求,則點P、Q只能在軸兩側(cè)。

          不妨設(shè),則,顯然

          是以O(shè)為直角頂點的直角三角形,∴

              (*)若方程(*)有解,存在滿足題設(shè)要求的兩點P、Q;

          若方程(*)無解,不存在滿足題設(shè)要求的兩點P、Q.

          (Ⅰ)當(dāng)時,,則。

          依題意得:,即    解得

          (Ⅱ)由(Ⅰ)知,

          ①當(dāng)時,,令

          當(dāng)變化時,的變化情況如下表:

          0

          0

          +

          0

          單調(diào)遞減

          極小值

          單調(diào)遞增

          極大值

          單調(diào)遞減

          ,,!上的最大值為2.

          ②當(dāng)時, .當(dāng)時, ,最大值為0;

          當(dāng)時, 上單調(diào)遞增!最大值為。

          綜上,當(dāng)時,即時,在區(qū)間上的最大值為2;

          當(dāng)時,即時,在區(qū)間上的最大值為

          (Ⅲ)假設(shè)曲線上存在兩點P、Q滿足題設(shè)要求,則點P、Q只能在軸兩側(cè)。

          不妨設(shè),則,顯然

          是以O(shè)為直角頂點的直角三角形,∴

              (*)若方程(*)有解,存在滿足題設(shè)要求的兩點P、Q;

          若方程(*)無解,不存在滿足題設(shè)要求的兩點P、Q.

          ,則代入(*)式得:

          ,而此方程無解,因此。此時,

          代入(*)式得:    即   (**)

           ,則

          上單調(diào)遞增,  ∵     ∴,∴的取值范圍是

          ∴對于,方程(**)總有解,即方程(*)總有解。

          因此,對任意給定的正實數(shù),曲線上存在兩點P、Q,使得是以O(shè)為直角頂點的直角三角形,且此三角形斜邊中點在軸上

           

          查看答案和解析>>


          同步練習(xí)冊答案