日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 于是當時,.也即存在這樣的直線; 查看更多

           

          題目列表(包括答案和解析)

          已知數(shù)列的前項和為,且 (N*),其中

          (Ⅰ) 求的通項公式;

          (Ⅱ) 設 (N*).

          ①證明: ;

          ② 求證:.

          【解析】本試題主要考查了數(shù)列的通項公式的求解和運用。運用關(guān)系式,表示通項公式,然后得到第一問,第二問中利用放縮法得到,②由于,

          所以利用放縮法,從此得到結(jié)論。

          解:(Ⅰ)當時,由.  ……2分

          若存在

          從而有,與矛盾,所以.

          從而由.  ……6分

           (Ⅱ)①證明:

          證法一:∵

           

          .…………10分

          證法二:,下同證法一.           ……10分

          證法三:(利用對偶式)設,

          .又,也即,所以,也即,又因為,所以.即

                              ………10分

          證法四:(數(shù)學歸納法)①當時, ,命題成立;

             ②假設時,命題成立,即,

             則當時,

              即

          故當時,命題成立.

          綜上可知,對一切非零自然數(shù),不等式②成立.           ………………10分

          ②由于,

          所以

          從而.

          也即

           

          查看答案和解析>>

          某學生在觀察正整數(shù)的前n項平方和公式即12+22+32+…+n2=
          n(n+1)(2n+1)
          6
          ,n∈N*時發(fā)現(xiàn)它的和為關(guān)于n的三次函數(shù),于是他猜想:是否存在常數(shù)a,b,1•22+2•32+…+n(n+1)2=
          n(n+1)(n+2)(an+b)
          12
          .對于一切n∈N*都立?
          (1)若n=1,2 時猜想成立,求實數(shù)a,b的值.
          (2)若該同學的猜想成立,請你用數(shù)學歸納法證明.若不成立,說明理由.

          查看答案和解析>>

          給出定義:若函數(shù)上可導,即存在,且導函數(shù)上也可導,則稱 在上存在二階導函數(shù),記,若上恒成立,則稱上為凸函數(shù)。以下四個函數(shù)在上不是凸函數(shù)的是(     )

          A.      B. 

           C.      D.

          查看答案和解析>>

          給出定義:若函數(shù)在D上可導,即存在,且導函數(shù)在D上也可導,則稱在D上存在二階導函數(shù),記,若在D上恒成立,則稱在D上為凸函數(shù),以下四個函數(shù)在(0,)上不是凸函數(shù)的是(  )

          A.  B.  C.  D.

           

          查看答案和解析>>

          給出定義:若函數(shù)上可導,即存在,且導函數(shù)上也可導,則稱上存在二階導函數(shù),記,若上恒成立,則稱上為凸函數(shù)。以下四個函數(shù)在上不是凸函數(shù)的是(   )

          A. B.  C.    D.

           

          查看答案和解析>>


          同步練習冊答案