日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 18.用兩種方法解方程:. 查看更多

           

          題目列表(包括答案和解析)

          利用圖象解一元二次方程時(shí),我們采用的一種方法是:在平面直角坐標(biāo)系中畫出拋物線和直線,兩圖象交點(diǎn)的橫坐標(biāo)就是該方程的解。

          (1)填空:利用圖象解一元二次方程,也可以這樣求解:在平面直角坐標(biāo)系中畫出拋物線     和直線,其交點(diǎn)的橫坐標(biāo)就是該方程的解。(4分)

          (2)已知函數(shù)的圖象(如圖所示),利用圖象求方程 的近似解(結(jié)果保留兩個(gè)有效數(shù)字)

           

          查看答案和解析>>

          利用圖象解一元二次方程x2-2x-1=0時(shí),我們采用的一種方法是:在直角坐標(biāo)系中畫出拋物線y=x2和直線y=2x+1,兩圖象交點(diǎn)的橫坐標(biāo)就是該方程的解。
          (1)請?jiān)俳o出一種利用圖象求方程x2-2x-1=0的解的方法;
          (2)已知函數(shù)y=x3的圖象(如圖):求方程x3-x-2=0的解。(結(jié)果保留2個(gè)有效數(shù)字)

          查看答案和解析>>

          利用圖象解一元二次方程x2+x-3=0時(shí),我們采用的一種方法是:在平面直角坐標(biāo)系中畫出拋物線y=x2和直線y=-x+3,兩圖象交點(diǎn)的橫坐標(biāo)就是該方程的解。
          (1)填空:利用圖象解一元二次方程x2+x-3=0,也可以這樣求解:在平面直角坐標(biāo)系中畫出拋物線y=______和直線y=-x,其交點(diǎn)的橫坐標(biāo)就是該方程的解。
          (2)已知函數(shù)的圖象(如圖所示),利用圖象求方程的近似解(結(jié)果保留兩個(gè)有效數(shù)字)。

          查看答案和解析>>

          數(shù)形結(jié)合作為一種數(shù)學(xué)思想方法,數(shù)形結(jié)合的應(yīng)用大致又可分為兩種情形:或者借助于數(shù)的精確性來闡明形的某些屬性,即 “以數(shù)解形”;或者借助形的幾何直觀性來闡明數(shù)之間的某種關(guān)系,即 “以形助數(shù)”。
          如浙教版九上課本第109頁作業(yè)題第2題:如圖1,已知在△ABC中,∠ACB=90°,CD⊥AB,D為垂足。易證得兩個(gè)結(jié)論:
          (1)AC·BC=AB·CD;
          (2)AC2=AD·AB。

                                   圖1                                                       圖2
          (1)請你用數(shù)形結(jié)合的“以數(shù)解形”思想來解:如圖2,已知在△ABC中(AC>BC),∠ACB=90°,CD⊥AB,D為垂足,CM平分∠ACB,且BC、AC是方程x2-14x+48=0的兩個(gè)根,求AD、MD的長;
          (2)請你用數(shù)形結(jié)合的“以形助數(shù)”思想來解: 設(shè)a、b、c、d都是正數(shù),滿足a:b=c:d,且a最大。求證:a+d>b+c(提示:不訪設(shè)AB=a,CD=d,AC=b,BC=c,構(gòu)造圖1)。

          查看答案和解析>>

          數(shù)形結(jié)合作為一種數(shù)學(xué)思想方法,數(shù)形結(jié)合的應(yīng)用大致又可分為兩種情形:或者借助于數(shù)的精確性來闡明形的某些屬性,即 “以數(shù)解形”;或者借助形的幾何直觀性來闡明數(shù)之間的某種關(guān)系,即 “以形助數(shù)”。                                                             

          如浙教版九上課本第109頁作業(yè)題第2題:如圖1,已知在△ABC中,∠ACB=900,CD⊥AB,D為垂足。易證得兩個(gè)結(jié)論:(1)AC·BC = AB·CD   (2)AC2= AD·AB

          (1)請你用數(shù)形結(jié)合的“以數(shù)解形”思想來解:如圖2,已知在△ABC中(AC>BC),∠ACB=900,CD⊥AB,D為垂足, CM平分∠ACB,且BC、AC是方程x2-14x+48=0的兩個(gè)根,求AD、MD的長。

          (2)請你用數(shù)形結(jié)合的“以形助數(shù)”思想來解: 設(shè)a、b、c、d都是正數(shù),滿足a:b=c:d,且a最大。求證:a+d>b+c(提示:不訪設(shè)AB=a,CD=d,AC=b,BC=c,構(gòu)造圖1)

          查看答案和解析>>


          同步練習(xí)冊答案