日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 20.手工課上小明遇到這樣一個難題:要把一個無蓋的單位正方體的展開圖剪開拼成一個正方形圖案.不準(zhǔn)有縫隙也不能有剩余.請你在圖①中幫他畫出剪的方案.在右邊方框中畫出拼的方案. 查看更多

           

          題目列表(包括答案和解析)

          閱讀下面資料:
          小明遇到這樣一個問題:如圖1,對面積為a的△ABC逐次進(jìn)行以下操作:分別延長AB、BC、CA至A1、B1、C1,使得A1B=2AB,B1C=2BC,C1A=2CA,順次連接A1、B1、C1,得到△A1B1C1,記其面積為S1,求S1的值.
          小明是這樣思考和解決這個問題的:如圖2,連接A1C、B1A、C1B,因為A1B=2AB,B1C=2BC,C1A=2CA,根據(jù)等高兩三角形的面積比等于底之比,所以SA1BC=SB1CA=SC1AB=2S△ABC=2a,由此繼續(xù)推理,從而解決了這個問題.

          (1)直接寫出S1=
          19a
          19a
          (用含字母a的式子表示).
          請參考小明同學(xué)思考問題的方法,解決下列問題:
          (2)如圖3,P為△ABC內(nèi)一點(diǎn),連接AP、BP、CP并延長分別交邊BC、AC、AB于點(diǎn)D、E、F,則把△ABC分成六個小三角形,其中四個小三角形面積已在圖上標(biāo)明,求△ABC的面積.
          (3)如圖4,若點(diǎn)P為△ABC的邊AB上的中線CF的中點(diǎn),求S△APE與S△BPF的比值.

          查看答案和解析>>

          (2012•博野縣模擬)閱讀下面材料:
          小明遇到這樣一個問題:如圖1,△ABO和△CDO均為等腰直角三角形,∠AOB=∠COD=90°.若△BOC的面積為1,試求以AD、BC、OC+OD的長度為三邊長的三角形的面積.

          小明是這樣思考的:要解決這個問題,首先應(yīng)想辦法移動這些分散的線段,構(gòu)造一個三角形,再計算其面積即可.他利用圖形變換解決了這個問題,其解題思路是延長CO到E,使得OE=CO,連接BE,可證△OBE≌△OAD,從而得到的△BCE即是以AD、BC、OC+OD的長度為三邊長的三角形(如圖2).
          請你回答:圖2中△BCE的面積等于
          2
          2

          請你嘗試用平移、旋轉(zhuǎn)、翻折的方法,解決下列問題:
          如圖3,已知△ABC,分別以AB、AC、BC為邊向外作正方形ABDE、AGFC、BCHI,連接EG、FH、ID.
          (1)在圖3中利用圖形變換畫出并指明以EG、FH、ID的長度為三邊長的一個三角形(保留畫圖痕跡);
          (2)若△ABC的面積為1,則以EG、FH、ID的長度為三邊長的三角形的面積等于
          3
          3

          查看答案和解析>>

          (2013•南開區(qū)一模)閱讀下面材料:小明遇到這樣一個問題:如圖1,△ABO和△CBO均為等腰直角三角形,∠AOB=∠COD=90°,若△BOC的面積為1,試求以AD、BC、OC+OD的長度為三邊長的三角形的面積.小明是這樣思考的:要解決這個問題,首先應(yīng)想辦法移動這些分散的線段,構(gòu)成一個三角形,在計算其面積即可.他利用圖形變換解決了這個問題,其解題思路是延長CO到E,使得OE=CO,連接BE,可證△OBE≌△OAD,從而等到的△BCE即時以AD、BC、OC+OD的長度為三邊長的三角形(如圖2).
          (I)請你回答:圖2中△BCE的面積等于
          2
          2

          (II)請你嘗試用平移、旋轉(zhuǎn)、翻折的方法,解決下列問題:如圖3,已知ABC,分別以AB、AC、BC為邊向外作正方形ABDE、AGFC、BCHI,連接EG、FH、ID.若△ABC的面積為1,則以EG、FH、ID的長度為三邊長的三角形的面積等于
          3
          3

          查看答案和解析>>

          (2012•海淀區(qū)二模)閱讀下面材料:
          小明遇到這樣一個問題:
          我們定義:如果一個圖形繞著某定點(diǎn)旋轉(zhuǎn)一定的角度α (0°<α<360°) 后所得的圖形與原圖形重合,則稱此圖形是旋轉(zhuǎn)對稱圖形.如等邊三角形就是一個旋轉(zhuǎn)角為120°的旋轉(zhuǎn)對稱圖形.如圖1,點(diǎn)O是等邊三角形△ABC的中心,D、E、F分別為AB、BC、CA的中點(diǎn),請你將△ABC分割并拼補(bǔ)成一個與△ABC面積相等的新的旋轉(zhuǎn)對稱圖形.

          小明利用旋轉(zhuǎn)解決了這個問題,圖2中陰影部分所示的圖形即是與△ABC面積相等的新的旋轉(zhuǎn)對稱圖形.
          請你參考小明同學(xué)解決問題的方法,利用圖形變換解決下列問題:
          如圖3,在等邊△ABC中,E1、E2、E3分別為AB、BC、CA 的中點(diǎn),P1、P2,M1、M2,N1、N2分別為AB、BC、CA的三等分點(diǎn).
          (1)在圖3中畫出一個和△ABC面積相等的新的旋轉(zhuǎn)對稱圖形,并用陰影表示(保留畫圖痕跡);
          (2)若△ABC的面積為a,則圖3中△FGH的面積為
          a
          7
          a
          7

          查看答案和解析>>

          (2013•北京)閱讀下面材料:
          小明遇到這樣一個問題:如圖1,在邊長為a(a>2)的正方形ABCD各邊上分別截取AE=BF=CG=DH=1,當(dāng)∠AFQ=∠BGM=∠CHN=∠DEP=45°時,求正方形MNPQ的面積.
          小明發(fā)現(xiàn),分別延長QE,MF,NG,PH交FA,GB,HC,ED的延長線于點(diǎn)R,S,T,W,可得△RQF,△SMG,△TNH,△WPE是四個全等的等腰直角三角形(如圖2)
          請回答:
          (1)若將上述四個等腰直角三角形拼成一個新的正方形(無縫隙不重疊),則這個新正方形的邊長為
          a
          a
          ;
          (2)求正方形MNPQ的面積.
          (3)參考小明思考問題的方法,解決問題:
          如圖3,在等邊△ABC各邊上分別截取AD=BE=CF,再分別過點(diǎn)D,E,F(xiàn)作BC,AC,AB的垂線,得到等邊△RPQ.若S△RPQ=
          3
          3
          ,則AD的長為
          2
          3
          2
          3

          查看答案和解析>>


          同步練習(xí)冊答案