日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (10)若要確保從口袋中摸出的小球至少有10個(gè)是同色的呢? 查看更多

           

          題目列表(包括答案和解析)

          實(shí)際問題:某學(xué)校共有18個(gè)教學(xué)班,每班的學(xué)生數(shù)都是40人.為了解學(xué)生課余時(shí)間上網(wǎng)情況,學(xué)校打算做一次抽樣調(diào)查,如果要確保全校抽取出來的學(xué)生中至少有10人在同一班級(jí),那么全校最少需抽取多少名學(xué)生?

          建立模型:為解決上面的“實(shí)際問題”,我們先建立并研究下面從口袋中摸球的數(shù)學(xué)模型:

          在不透明的口袋中裝有紅、黃、白三種顏色的小球各20個(gè)(除顏色外完全相同),現(xiàn)要確保從口袋中隨機(jī)摸出的小球至少有10個(gè)是同色的,則最少需摸出多少個(gè)小球?

          為了找到解決問題的辦法,我們可把上述問題簡單化:

          (1)我們首先考慮最簡單的情況:即要確保從口袋中摸出的小球至少有2個(gè)是同色的,則最少需摸出多少個(gè)小球?

          假若從袋中隨機(jī)摸出3個(gè)小球,它們的顏色可能會(huì)出現(xiàn)多種情況,其中最不利的情況就是它們的顏色各不相同,那么只需再從袋中摸出1個(gè)小球就可確保至少有2個(gè)小球同色,即最少需摸出小球的個(gè)數(shù)是:1+3=4(如圖①);

          (2)若要確保從口袋中摸出的小球至少有3個(gè)是同色的呢?

          我們只需在(1)的基礎(chǔ)上,再從袋中摸出3個(gè)小球,就可確保至少有3個(gè)小球同色,即最少需摸出小球的個(gè)數(shù)是:1+3×2=7(如圖②)

          (3)若要確保從口袋中摸出的小球至少有4個(gè)是同色的呢?

          我們只需在(2)的基礎(chǔ)上,再從袋中摸出3個(gè)小球,就可確保至少有4個(gè)小球同色,即最少需摸出小球的個(gè)數(shù)是:1+3×3=10(如圖③):

          ……

          (10)若要確保從口袋中摸出的小球至少有10個(gè)是同色的呢?

          我們只需在(9)的基礎(chǔ)上,再從袋中摸出3個(gè)小球,就可確保至少有10個(gè)小球同色,即最少需摸出小球的個(gè)數(shù)是:1+3×(10-1)=28(如圖⑩)

          模型拓展一:在不透明的口袋中裝有紅、黃、白、藍(lán)、綠五種顏色的小球各20個(gè)(除顏色外完全相同),現(xiàn)從袋中隨機(jī)摸球:

          (1)若要確保摸出的小球至少有2個(gè)同色,則最少需摸出小球的個(gè)數(shù)是________

          (2)若要確保摸出的小球至少有10個(gè)同色,則最少需摸出小球的個(gè)數(shù)是________

          (3)若要確保摸出的小球至少有n個(gè)同色(n<20),則最少需摸出小球的個(gè)數(shù)是________

          模型拓展二:在不透明口袋中裝有m種顏色的小球各20個(gè)(除顏色外完全相同),現(xiàn)從袋中隨機(jī)摸球:

          (1)若要確保摸出的小球至少有2個(gè)同色,則最少需摸出小球的個(gè)數(shù)是________

          (2)若要確保摸出的小球至少有n個(gè)同色(n<20),則最少需摸出小球的個(gè)數(shù)是________

          問題解決:(1)請(qǐng)把本題中的“實(shí)際問題”轉(zhuǎn)化為一個(gè)從口袋中摸球的數(shù)學(xué)模型;

          (2)根據(jù)(1)中建立的數(shù)學(xué)模型,求出全校最少需抽取多少名學(xué)生.

          查看答案和解析>>

          實(shí)際問題:某學(xué)校共有18個(gè)教學(xué)班,每班的學(xué)生數(shù)都是40人.為了解學(xué)生課余時(shí)間上網(wǎng)情況,學(xué)校打算做一次抽樣調(diào)查,如果要確保全校抽取出來的學(xué)生中至少有10人在同一班級(jí),那么全校最少需抽取多少名學(xué)生?

          建立模型:為解決上面的“實(shí)際問題”,我們先建立并研究下面從口袋中摸球的數(shù)學(xué)模型:

          在不透明的口袋中裝有紅、黃、白三種顏色的小球各20個(gè)(除顏色外完全相同),現(xiàn)要確保從口袋中隨機(jī)摸出的小球至少有10個(gè)是同色的,則最少需摸出多少個(gè)小球?

          為了找到解決問題的辦法,我們可把上述問題簡單化:

          (1)我們首先考慮最簡單的情況:即要確保從口袋中摸出的小球至少有2個(gè)是同色的,則最少需摸出多少個(gè)小球?

          假若從袋中隨機(jī)摸出3個(gè)小球,它們的顏色可能會(huì)出現(xiàn)多種情況,其中最不利的情況就是它們的顏色各不相同,那么只需再從袋中摸出1個(gè)小球就可確保至少有2個(gè)小球同色,即最少需摸出小球的個(gè)數(shù)是:(如圖①);

          (2)若要確保從口袋中摸出的小球至少有3個(gè)是同色的呢?

          我們只需在(1)的基礎(chǔ)上,再從袋中摸出3個(gè)小球,就可確保至少有3個(gè)小球同色,即最少需摸出小球的個(gè)數(shù)是:(如圖②)

          (3)若要確保從口袋中摸出的小球至少有4個(gè)是同色的呢?

          我們只需在(2)的基礎(chǔ)上,再從袋中摸出3個(gè)小球,就可確保至少有4個(gè)小球同色,即最少需摸出小球的個(gè)數(shù)是:(如圖③):

          (10)若要確保從口袋中摸出的小球至少有10個(gè)是同色的呢?

          我們只需在(9)的基礎(chǔ)上,再從袋中摸出3個(gè)小球,就可確保至少有10個(gè)小球同色,即最少需摸出小球的個(gè)數(shù)是:(如圖⑩)

          模型拓展一:在不透明的口袋中裝有紅、黃、白、藍(lán)、綠五種顏色的小球各20分(除顏色外完全相同),現(xiàn)從袋中隨機(jī)摸球:

          (1)若要確保摸出的小球至少有2個(gè)同色,則最少需摸出小球的個(gè)數(shù)是         

          (2)若要確保摸出的小球至少有10個(gè)同色,則最少需摸出小球的個(gè)數(shù)是         ;

          (3)若要確保摸出的小球至少有個(gè)同色(),則最少需摸出小球的個(gè)數(shù)是        

          模型拓展二:在不透明口袋中裝有種顏色的小球各20個(gè)(除顏色外完全相同),現(xiàn)從袋中隨機(jī)摸球:

          (1)若要確保摸出的小球至少有2個(gè)同色,則最少需摸出小球的個(gè)數(shù)是          

          (2)若要確保摸出的小球至少有個(gè)同色(),則最少需摸出小球的個(gè)數(shù)是      

          問題解決:(1)請(qǐng)把本題中的“實(shí)際問題”轉(zhuǎn)化為一個(gè)從口袋中摸球的數(shù)學(xué)模型;

          (2)根據(jù)(1)中建立的數(shù)學(xué)模型,求出全校最少需抽取多少名學(xué)生.

          查看答案和解析>>

          17、實(shí)際問題:某學(xué)校共有18個(gè)教學(xué)班,每班的學(xué)生數(shù)都是40人.為了解學(xué)生課余時(shí)間上網(wǎng)情況,學(xué)校打算做一次抽樣調(diào)查,如果要確保全校抽取出來的學(xué)生中至少有10人在同一班級(jí),那么全校最少需抽取多少名學(xué)生?
          建立模型:為解決上面的“實(shí)際問題”,我們先建立并研究下面從口袋中摸球的數(shù)學(xué)模型:
          在不透明的口袋中裝有紅,黃,白三種顏色的小球各20個(gè)(除顏色外完全相同),現(xiàn)要確保從口袋中隨機(jī)摸出的小球至少有10個(gè)是同色的,則最少需摸出多少個(gè)小球?
          為了找到解決問題的辦法,我們可把上述問題簡單化:
          (1)我們首先考慮最簡單的情況:即要確保從口袋中摸出的小球至少有2個(gè)是同色的,則最少需摸出多少個(gè)小球?
          假若從袋中隨機(jī)摸出3個(gè)小球,它們的顏色可能會(huì)出現(xiàn)多種情況,其中最不利的情況就是它們的顏色各不相同,那么只需再從袋中摸出1個(gè)小球就可確保至少有2個(gè)小球同色,即最少需摸出小球的個(gè)數(shù)是:1+3=4(如圖①);
          (2)若要確保從口袋中摸出的小球至少有3個(gè)是同色的呢?
          我們只需在(1)的基礎(chǔ)上,再從袋中摸出3個(gè)小球,就可確保至少有3個(gè)小球同色,即最少需摸出小球的個(gè)數(shù)是:1+3×2=7(如圖②)
          (3)若要確保從口袋中摸出的小球至少有4個(gè)是同色的呢?
          我們只需在(2)的基礎(chǔ)上,再從袋中摸出3個(gè)小球,就可確保至少有4個(gè)小球同色,即最少需摸出小球的個(gè)數(shù)是:1+3×3=10(如圖③):…
          (10)若要確保從口袋中摸出的小球至少有10個(gè)是同色的呢?
          我們只需在(9)的基礎(chǔ)上,再從袋中摸出3個(gè)小球,就可確保至少有10個(gè)小球同色,即最少需摸出小球的個(gè)數(shù)是:1+3×(10-1)=28(如圖⑩)

          模型拓展一:在不透明的口袋中裝有紅,黃,白,藍(lán),綠五種顏色的小球各20個(gè)(除顏色外完全相同),現(xiàn)從袋中隨機(jī)摸球:
          (1)若要確保摸出的小球至少有2個(gè)同色,則最少需摸出小球的個(gè)數(shù)是
          6
          ;
          (2)若要確保摸出的小球至少有10個(gè)同色,則最少需摸出小球的個(gè)數(shù)是
          46
          ;
          (3)若要確保摸出的小球至少有n個(gè)同色(n<20),則最少需摸出小球的個(gè)數(shù)是
          1+5(n-1)

          模型拓展二:在不透明口袋中裝有m種顏色的小球各20個(gè)(除顏色外完全相同),現(xiàn)從袋中隨機(jī)摸球:
          (1)若要確保摸出的小球至少有2個(gè)同色,則最少需摸出小球的個(gè)數(shù)是
          1+m

          (2)若要確保摸出的小球至少有n個(gè)同色(n<20),則最少需摸出小球的個(gè)數(shù)是
          1+m(n-1)

          問題解決:(1)請(qǐng)把本題中的“實(shí)際問題”轉(zhuǎn)化為一個(gè)從口袋中摸球的數(shù)學(xué)模型;
          (2)根據(jù)(1)中建立的數(shù)學(xué)模型,求出全校最少需抽取多少名學(xué)生?

          查看答案和解析>>

          實(shí)際問題:某學(xué)校共有18個(gè)教學(xué)班,每班的學(xué)生數(shù)都是40人.為了解學(xué)生課余時(shí)間上網(wǎng)情況,學(xué)校打算做一次抽樣調(diào)查,如果要確保全校抽取出來的學(xué)生中至少有10人在同一班級(jí),那么全校最少需抽取多少名學(xué)生?
          建立模型:為解決上面的“實(shí)際問題”,我們先建立并研究下面從口袋中摸球的數(shù)學(xué)模型:
          在不透明的口袋中裝有紅,黃,白三種顏色的小球各20個(gè)(除顏色外完全相同),現(xiàn)要確保從口袋中隨機(jī)摸出的小球至少有10個(gè)是同色的,則最少需摸出多少個(gè)小球?
          為了找到解決問題的辦法,我們可把上述問題簡單化:
          (1)我們首先考慮最簡單的情況:即要確保從口袋中摸出的小球至少有2個(gè)是同色的,則最少需摸出多少個(gè)小球?
          假若從袋中隨機(jī)摸出3個(gè)小球,它們的顏色可能會(huì)出現(xiàn)多種情況,其中最不利的情況就是它們的顏色各不相同,那么只需再從袋中摸出1個(gè)小球就可確保至少有2個(gè)小球同色,即最少需摸出小球的個(gè)數(shù)是:1+3=4(如圖①);
          (2)若要確保從口袋中摸出的小球至少有3個(gè)是同色的呢?
          我們只需在(1)的基礎(chǔ)上,再從袋中摸出3個(gè)小球,就可確保至少有3個(gè)小球同色,即最少需摸出小球的個(gè)數(shù)是:1+3×2=7(如圖②)
          (3)若要確保從口袋中摸出的小球至少有4個(gè)是同色的呢?
          我們只需在(2)的基礎(chǔ)上,再從袋中摸出3個(gè)小球,就可確保至少有4個(gè)小球同色,即最少需摸出小球的個(gè)數(shù)是:1+3×3=10(如圖③):…
          (10)若要確保從口袋中摸出的小球至少有10個(gè)是同色的呢?
          我們只需在(9)的基礎(chǔ)上,再從袋中摸出3個(gè)小球,就可確保至少有10個(gè)小球同色,即最少需摸出小球的個(gè)數(shù)是:1+3×(10-1)=28(如圖⑩)

          模型拓展一:在不透明的口袋中裝有紅,黃,白,藍(lán),綠五種顏色的小球各20個(gè)(除顏色外完全相同),現(xiàn)從袋中隨機(jī)摸球:
          (1)若要確保摸出的小球至少有2個(gè)同色,則最少需摸出小球的個(gè)數(shù)是______;
          (2)若要確保摸出的小球至少有10個(gè)同色,則最少需摸出小球的個(gè)數(shù)是______;
          (3)若要確保摸出的小球至少有n個(gè)同色(n<20),則最少需摸出小球的個(gè)數(shù)是______.
          模型拓展二:在不透明口袋中裝有m種顏色的小球各20個(gè)(除顏色外完全相同),現(xiàn)從袋中隨機(jī)摸球:
          (1)若要確保摸出的小球至少有2個(gè)同色,則最少需摸出小球的個(gè)數(shù)是______.
          (2)若要確保摸出的小球至少有n個(gè)同色(n<20),則最少需摸出小球的個(gè)數(shù)是______.
          問題解決:(1)請(qǐng)把本題中的“實(shí)際問題”轉(zhuǎn)化為一個(gè)從口袋中摸球的數(shù)學(xué)模型;
          (2)根據(jù)(1)中建立的數(shù)學(xué)模型,求出全校最少需抽取多少名學(xué)生?

          查看答案和解析>>

          實(shí)際問題:
          某學(xué)校共有18個(gè)教學(xué)班,每班的學(xué)生數(shù)都是40人,為了解學(xué)生課余時(shí)間上網(wǎng)情況,學(xué)校打算做一次抽樣調(diào)查,如果要確保全校抽取出來的學(xué)生中至少有10人在同一班級(jí),那么全校最少需抽取多少名學(xué)生?
          建立模型:
          為解決上面的“實(shí)際問題”,我們先建立并研究下面從口袋中摸球的數(shù)學(xué)模型:在不透明的口袋中裝有紅、黃、白三種顏色的小球各20個(gè)(除顏色外完全相同),現(xiàn)要確保從口袋中隨機(jī)摸出的小球至少有10個(gè)是同色的,則最少需摸出多少個(gè)小球?
          為了找到解決問題的辦法,我們可把上述問題簡單化:
          (1)我們首先考慮最簡單的情況:即要確保從口袋中摸出的小球至少有2個(gè)是同色的,則最少需摸出多少個(gè)小球?假若從袋中隨機(jī)摸出3個(gè)小球,它們的顏色可能會(huì)出現(xiàn)多種情況,其中最不利的情況就是它們的顏色各不相同,那么只需再從袋中摸出1個(gè)小球就可確保至少有2個(gè)小球同色,即最少需摸出小球的個(gè)數(shù)是:1+3=4(如圖①);
          (2)若要確保從口袋中摸出的小球至少有3個(gè)是同色的呢?我們只需在(1)的基礎(chǔ)上,再從袋中摸出3個(gè)小球,就可確保至少有3個(gè)小球同色,即最少需摸出小球的個(gè)數(shù)是:1+3×2=7(如圖②)
          (3)若要確保從口袋中摸出的小球至少有4個(gè)是同色的呢?我們只需在(2)的基礎(chǔ)上,再從袋中摸出3個(gè)小球,就可確保至少有4個(gè)小球同色,即最少需摸出小球的個(gè)數(shù)是:1+3×3=10(如圖③)
          ...
          (10)若要確保從口袋中摸出的小球至少有10個(gè)是同色的呢?我們只需在(9)的基礎(chǔ)上,再從袋中摸出3個(gè)小球,就可確保至少有10個(gè)小球同色,即最少需摸出小球的個(gè)數(shù)是:1+3×(10-1)=28(如圖⑩)

          模型拓展一:
          在不透明的口袋中裝有紅、黃、白、藍(lán)、綠五種顏色的小球各20分(除顏色外完全相同),現(xiàn)從袋中隨機(jī)摸球:
          (1)若要確保摸出的小球至少有2個(gè)同色,則最少需摸出小球的個(gè)數(shù)是____;
          (2)若要確保摸出的小球至少有10個(gè)同色,則最少需摸出小球的個(gè)數(shù)是____;
          (3)若要確保摸出的小球至少有n個(gè)同色(n<20),則最少需摸出小球的個(gè)數(shù)是____;
          模型拓展二:
          在不透明口袋中裝有m種顏色的小球各20個(gè)(除顏色外完全相同),現(xiàn)從袋中隨機(jī)摸球:
          (1)若要確保摸出的小球至少有2個(gè)同色,則最少需摸出小球的個(gè)數(shù)是____;
          (2)若要確保摸出的小球至少有n個(gè)同色(n<20),則最少需摸出小球的個(gè)數(shù)是____;
          問題解決:
          (1)請(qǐng)把本題中的“實(shí)際問題”轉(zhuǎn)化為一個(gè)從口袋中摸球的數(shù)學(xué)模型;
          (2)根據(jù)(1)中建立的數(shù)學(xué)模型,求出全校最少需抽取多少名學(xué)生。

          查看答案和解析>>


          同步練習(xí)冊(cè)答案