日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 五.證明題 查看更多

           

          題目列表(包括答案和解析)

          18世紀(jì)瑞士數(shù)學(xué)家歐拉證明了簡單多面體中頂點(diǎn)數(shù)(V)、面數(shù)(F)、棱數(shù)(E)之間存在的一個(gè)有趣的關(guān)系式,被稱為歐拉公式.請你觀察下列幾種簡單多面體模型如圖1,解答下列問題:
          多面體 頂點(diǎn)數(shù)(V) 面數(shù)(F) 棱數(shù)(E)
          四面體 4 4
          長方體 8 12
          正八面體 8 12
          正十二面體 20 12 30
          (1)根據(jù)上面多面體模型,完成表格中的空格,你發(fā)現(xiàn)頂點(diǎn)數(shù)(V)、面數(shù)(F)、棱數(shù)(E)之間存在的關(guān)系式是
          V+F-E=2
          V+F-E=2

          (2)一個(gè)多面體的面數(shù)與頂點(diǎn)數(shù)相等,有12條棱,這個(gè)多面體是
          7
          7
          面體
          (3)圖2足球雖然是球體,但實(shí)際上足球表面是由正五邊形,正六邊形皮料組成的多面體加工而成每塊正五邊形皮料周圍都是正六邊形皮料;每兩個(gè)相鄰的多邊形恰有一條公共的邊;每個(gè)頂點(diǎn)處都有三塊皮料,而且都遵循一個(gè)正五邊形、兩個(gè)正六邊形的規(guī)律,請你利用(1)中的關(guān)系式,求出一個(gè)足球中各有多少塊正五邊形、正六邊形的皮料.

          查看答案和解析>>

          十八世紀(jì)瑞士數(shù)學(xué)家歐拉證明了簡單多面體中頂點(diǎn)數(shù)(V)、面數(shù)(F)、棱數(shù)(E)之間存在的一個(gè)有趣的關(guān)系式,被稱為歐拉公式.請你觀察下列幾種簡單多面體模型,解答下列問題:

          (1)根據(jù)上面多面體模型,你發(fā)現(xiàn)頂點(diǎn)數(shù)(V)、面數(shù)(F)、棱數(shù)(E)之間存在的關(guān)系式是
          頂點(diǎn)數(shù)(V)+面數(shù)(F)-棱數(shù)(E)=2
          頂點(diǎn)數(shù)(V)+面數(shù)(F)-棱數(shù)(E)=2

          (2)某個(gè)玻璃飾品的外形是簡單多面體,它的外表面是由五邊形和六邊形兩種多邊形拼接而成,且有60個(gè)頂點(diǎn),每個(gè)頂點(diǎn)處都有3條棱,分別求該簡單多面體的外表面五邊形和六邊形的個(gè)數(shù).

          查看答案和解析>>

          在平面幾何中,我們可以證明:周長一定的多邊形中,正多邊形面積最大.使用上邊的事實(shí),解答下面的問題:
          用長度分別為2、3、4、5、6(單位:cm)的五根木棒圍成一個(gè)三角形(允許連接,但不允許折斷),求能夠圍成的三角形的最大面積.

          查看答案和解析>>

          十八世紀(jì)瑞士數(shù)學(xué)家歐拉證明了簡單多面體中頂點(diǎn)數(shù)(V)、面數(shù)(F)、棱數(shù)(E)之間存在的一個(gè)有趣的關(guān)系式,被稱為歐拉公式.請你觀察下列幾種簡單多面體模型,解答下列問題:

          (1)根據(jù)上面多面體模型,你發(fā)現(xiàn)頂點(diǎn)數(shù)(V)、面數(shù)(F)、棱數(shù)(E)之間存在的關(guān)系式是______.
          (2)某個(gè)玻璃飾品的外形是簡單多面體,它的外表面是由五邊形和六邊形兩種多邊形拼接而成,且有60個(gè)頂點(diǎn),每個(gè)頂點(diǎn)處都有3條棱,分別求該簡單多面體的外表面五邊形和六邊形的個(gè)數(shù).

          查看答案和解析>>

          在平面幾何中,我們可以證明:周長一定的多邊形中,正多邊形面積最大。
          使用上面的事實(shí),解答下面的問題:用長度分別為2、3、4、5、6(單位:cm)的五根木棒圍成一個(gè)三角形(允許連接,但不允許折斷),求能夠圍成的三角形的最大面積。

          查看答案和解析>>


          同步練習(xí)冊答案