日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 8.口袋中放有大小相等的兩個(gè)紅球和一個(gè)白球.有放回地每次摸取一個(gè)球.定義數(shù)列 查看更多

           

          題目列表(包括答案和解析)

          口袋中放有大小相等的兩個(gè)紅球和一個(gè)白球,有放回地每次摸取一個(gè)球,定義數(shù)列{an},,如果Sn為數(shù)列{an}的前n項(xiàng)和,那么S7=3的概率為

          [  ]

          A.

          B.

          C.

          D.

          查看答案和解析>>

          一個(gè)口袋中裝有大小相同的n個(gè)紅球(n≥5且n∈N)和5個(gè)白球,一次摸獎(jiǎng)從中摸兩個(gè)球,兩個(gè)球的顏色不同則為中獎(jiǎng).
          (1)記三次摸獎(jiǎng)(每次摸獎(jiǎng)后放回)恰有一次中獎(jiǎng)的概率為P.試問當(dāng)n等于多少時(shí),P的值最大?
          (2)在(1)的條件下,將5個(gè)白球全部取出后,對(duì)剩下的n個(gè)紅球全部作如下標(biāo)記:記上i號(hào)的有i個(gè)(i=1,2,3,4),其余的紅球記上0號(hào),現(xiàn)從袋中任取一球.ξ表示所取球的標(biāo)號(hào),求ξ的分布列,期望和方差.

          查看答案和解析>>

          一個(gè)口袋中裝有大小相同的n個(gè)紅球(n≥5且n∈N)和5個(gè)白球,一次摸獎(jiǎng)從中摸兩個(gè)球,兩個(gè)球的顏色不同則為中獎(jiǎng).
          (1)記三次摸獎(jiǎng)(每次摸獎(jiǎng)后放回)恰有一次中獎(jiǎng)的概率為P.試問當(dāng)n等于多少時(shí),P的值最大?
          (2)在(1)的條件下,將5個(gè)白球全部取出后,對(duì)剩下的n個(gè)紅球全部作如下標(biāo)記:記上i號(hào)的有i個(gè)(i=1,2,3,4),其余的紅球記上0號(hào),現(xiàn)從袋中任取一球.ξ表示所取球的標(biāo)號(hào),求ξ的分布列,期望和方差.

          查看答案和解析>>

          (2009•孝感模擬)一個(gè)口袋中裝有大小相同的n個(gè)紅球(n≥5且n∈N)和5個(gè)白球,一次摸獎(jiǎng)從中摸兩個(gè)球,兩個(gè)球的顏色不同則為中獎(jiǎng).
          (1)記三次摸獎(jiǎng)(每次摸獎(jiǎng)后放回)恰有一次中獎(jiǎng)的概率為P.試問當(dāng)n等于多少時(shí),P的值最大?
          (2)在(1)的條件下,將5個(gè)白球全部取出后,對(duì)剩下的n個(gè)紅球全部作如下標(biāo)記:記上i號(hào)的有i個(gè)(i=1,2,3,4),其余的紅球記上0號(hào),現(xiàn)從袋中任取一球.ξ表示所取球的標(biāo)號(hào),求ξ的分布列,期望和方差.

          查看答案和解析>>

           

          一、選擇題

          BBACA   DCBBB(分類分布求解)

          二、填空題

          11.{2,7}     12.840    13.1    14.2    15.(圓錐曲線定義)

          16.解:(1)由

             (2)由余弦定理知:

              又

          17.解:設(shè)事件A為“小張被甲單位錄取”,B為“被乙單位錄取”,C為“被丙單位錄取”。

             (1)小張沒有被錄取的概率為:

             (2)小張被一個(gè)單位錄取的概率為

              被兩個(gè)單位同時(shí)錄取的概率為

              被三個(gè)單位錄取的概率為:所以分布列為:

          ξ

          0

          1

          2

          3

          P

              所以:

          18.解:(1)

             

          <legend id="o5kww"></legend>
          <style id="o5kww"><abbr id="o5kww"></abbr></style>

          <strong id="o5kww"><u id="o5kww"></u></strong>
        2. <sub id="o5kww"></sub>

              所以:

          19.解:(1)連接B1D1,ABCD―A1B1C1D1為四棱柱,

          ,

          則在四邊形BB1D1D中(如圖),

            1. 得△D1O1B1≌△B1BO,可得∠D1O1B1=∠OBB1=90°,

              即D1O1⊥B1O

                 (2)連接OD1,顯然:∠D1OB1為所求的角,

              容易計(jì)算:∠D1OB1

                  所以:

              20.解:(1)曲線C的方程為

                 (2)當(dāng)直線的斜率不存在時(shí),它與曲線C只有一個(gè)交點(diǎn),不合題意,

                  當(dāng)直線m與x軸不垂直時(shí),設(shè)直線m的方程為

                 代入    ①

                  恒成立,

                  設(shè)交點(diǎn)A,B的坐標(biāo)分別為

              ∴直線m與曲線C恒有兩個(gè)不同交點(diǎn)。

                  ②        ③

               

                     當(dāng)k=0時(shí),方程①的解為

                 

                     當(dāng)k=0時(shí),方程①的解為

                  綜上,由

              21.解:(1)當(dāng)

                  由

              0

              遞增

              極大值

              遞減

                  所以

                 (2)

                     ①

                  由

                      ②

                  由①②得:即得:

                  與假設(shè)矛盾,所以成立

                 (3)解法1:由(2)得:

                 

                  由(2)得:

              解法3:可用數(shù)學(xué)歸納法:步驟同解法2

              解法4:可考慮用不等式步驟略