日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 17. 查看更多

           

          題目列表(包括答案和解析)

          (本小題滿分12分)二次函數(shù)的圖象經(jīng)過三點(diǎn).

          (1)求函數(shù)的解析式(2)求函數(shù)在區(qū)間上的最大值和最小值

          查看答案和解析>>

          (本小題滿分12分)已知等比數(shù)列{an}中, 

             (Ⅰ)求數(shù)列{an}的通項公式an;

             (Ⅱ)設(shè)數(shù)列{an}的前n項和為Sn,證明:;

             (Ⅲ)設(shè),證明:對任意的正整數(shù)n、m,均有

          查看答案和解析>>

          (本小題滿分12分)已知函數(shù),其中a為常數(shù).

             (Ⅰ)若當(dāng)恒成立,求a的取值范圍;

             (Ⅱ)求的單調(diào)區(qū)間.

          查看答案和解析>>

          (本小題滿分12分)

          甲、乙兩籃球運(yùn)動員進(jìn)行定點(diǎn)投籃,每人各投4個球,甲投籃命中的概率為,乙投籃命中的概率為

             (Ⅰ)求甲至多命中2個且乙至少命中2個的概率;

             (Ⅱ)若規(guī)定每投籃一次命中得3分,未命中得-1分,求乙所得分?jǐn)?shù)η的概率分布和數(shù)學(xué)期望.

          查看答案和解析>>

          (本小題滿分12分)已知是橢圓的兩個焦點(diǎn),O為坐標(biāo)原點(diǎn),點(diǎn)在橢圓上,且,圓O是以為直徑的圓,直線與圓O相切,并且與橢圓交于不同的兩點(diǎn)A、B.

             (1)求橢圓的標(biāo)準(zhǔn)方程;w.w.w.k.s.5.u.c.o.m        

             (2)當(dāng)時,求弦長|AB|的取值范圍.

          查看答案和解析>>

          一、本解答給出了一種或幾種解法供參考,如果考生的解法與本解答不同,可根據(jù)試題的主要考查內(nèi)容比照評分標(biāo)準(zhǔn)制訂相應(yīng)的評分細(xì)則.

          二、對計算題當(dāng)考生的解答在某一步出現(xiàn)錯誤時,如果后續(xù)部分的解答未改變該題的內(nèi)容和難度,可視影響的程度決定給分,但不得超過該部分正確解答應(yīng)得分?jǐn)?shù)的一半;如果后續(xù)部分的解答有較嚴(yán)重的錯誤,就不再給分.

          三、解答右端所注分?jǐn)?shù),表示考生正確做到這一步應(yīng)得的累加分?jǐn)?shù).

          四、只給整數(shù)分?jǐn)?shù),選擇題和填空題不給中間分?jǐn)?shù).

          一.選擇題:CCDAB   CBDAD

          1.選C.

          2.將各選項代入檢驗易得答案選C.

          3.由函數(shù)以為周期,可排除A、B,由函數(shù)在為增函數(shù),可排除C,故選D。

          5.正確命題有②、④,故選B.

          6.

          ,故選C。

          7.將圓的方程化為標(biāo)準(zhǔn)方程得,由數(shù)形結(jié)合不難得出所求的距離差為已知圓的直徑長.,故選B.

          8.該程序的功能是求和,因輸出結(jié)果,故選D.

          9.如圖設(shè)點(diǎn)P為AB的三等分點(diǎn),要使△PBC的面積不小于,則點(diǎn)P只能在

          AP上選取,由幾何概型的概率

          公式得所求概率為.故選A.

          10.如圖:易得答案選D.

          二.填空題:11.800、20%;12. 3;13. ①③④⑤;14. ; 15.

          11.由率分布直方圖知,及格率==80%,

          及格人數(shù)=80%×1000=800,優(yōu)秀率=%.

          12.由

          ,得

          13.顯然①可能,②不可能,③④⑤如右圖知都有可能。

          14.在平面直角坐標(biāo)系中,曲線分別表示圓和直線,易知

          15. C為圓周上一點(diǎn),AB是直徑,所以AC⊥BC,而BC=3,AB=6,得∠BAC=30°,進(jìn)而得∠B=60°,所以∠DCA=60°,又∠ADC=90°,得∠DAC=30°,

          三.解答題:

          16.解:(1)

                        ------------------------4分

          (2)∵

          ,

          由正弦定理得:

          ------------6分

          如圖過點(diǎn)B作垂直于對岸,垂足為D,則BD的長就是該河段的寬度。

          中,∵,------------8分

                 (米)

          ∴該河段的寬度米。---------------------------12分

          17.解:(1)設(shè),()由成等比數(shù)列得

          ,----------------①,   

            ∴---------------②

          由①②得,  ∴-----------------------------4分

          ,顯然數(shù)列是首項公差的等差數(shù)列

          ------------------------------------6分

          [或]

          (2)∵

          ------------8分

          2

          ---10分

          。------------------------------------------12分

          18.(1)解:∵

          ,

          平面------------ ----------------2分

          中, ,

          中,

          ,

          .--------------4分

          (2)證法1:由(1)知SA=2, 在中,---6分

          ,∴-------------------8分

          〔證法2:由(1)知平面,∵,

          ,∵,,∴

          又∵,∴

          (3) ∵

          為二面角C-SA-B的平面角---------10分

          中,∵

          ,

          ∴即所求二面角C-SA-B為-------------------------14分

          19.解:(1)依題意知,動點(diǎn)到定點(diǎn)的距離等于到直線的距離,曲線是以原點(diǎn)為頂點(diǎn),為焦點(diǎn)的拋物線………………………………2分

              ∵      ∴ 

          ∴ 曲線方程是………4分

          (2)設(shè)圓的圓心為,∵圓,

          ∴圓的方程為  ……………………………7分

          得:  

          設(shè)圓與軸的兩交點(diǎn)分別為,

          方法1:不妨設(shè),由求根公式得

          ,…………………………10分

          又∵點(diǎn)在拋物線上,∴,

          ∴ ,即=4--------------------------------------------------------13分

          ∴當(dāng)運(yùn)動時,弦長為定值4…………………………………………………14分

           〔方法2:∵ 

           又∵點(diǎn)在拋物線上,∴, ∴  

          ∴當(dāng)運(yùn)動時,弦長為定值4〕

          20. 解:設(shè)AN的長為x米(x >2)

                 ∵,∴|AM|=

          ∴SAMPN=|AN|•|AM|= ------------------------------------- 4分

          (1)由SAMPN > 32 得  > 32 ,

                 ∵x >2,∴,即(3x-8)(x-8)> 0

                 ∴       即AN長的取值范圍是----------- 8分

          (2)令y=,則y′=  -------------- 10分

          ∵當(dāng),y′< 0,∴函數(shù)y=上為單調(diào)遞減函數(shù),

          ∴當(dāng)x=3時y=取得最大值,即(平方米)

          此時|AN|=3米,|AM|=米      ---------------------- 12分

          21.解:

          (1) 

          ---------------2分

          當(dāng),函數(shù)有一個零點(diǎn);--------------3分

          當(dāng)時,,函數(shù)有兩個零點(diǎn)。------------4分

          (2)令,則

           

          內(nèi)必有一個實根。

          即方程必有一個實數(shù)根屬于。------------8分

          (3)假設(shè)存在,由①得

             

          由②知對,都有

          ,

          當(dāng)時,,其頂點(diǎn)為(-1,0)滿足條件①,又,都有,滿足條件②。

          ∴存在,使同時滿足條件①、②。------------------------------14分

           


          同步練習(xí)冊答案