日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (II)過雙曲線焦點F2且與(II)中AB平行的直線與雙曲線分別相交于C.D兩點.若A.B.C.D這四點依次構(gòu)成平行四邊形ABCD.求的值. 查看更多

           

          題目列表(包括答案和解析)

          設(shè)雙曲線的兩個焦點分別為F1、F2,離心率為2.
          (I)求雙曲線的漸近線方程;
          (II)過點N(1,0)能否作出直線l,使l與雙曲線C交于P、Q兩點,且,若存在,求出直線方程,若不存在,說明理由.

          查看答案和解析>>

          已知雙曲線
          x2
          4
          -
          y2
          b2
          =1(b∈N*) 的兩個焦點為F1、F2,P是雙曲線上的一點,且滿足|PF1|-|PF2|=|F1F2|2,|PF2|<4,
          (I)求b的值;
          (II)拋物線y2=2px(p>0)的焦點F與該雙曲線的右頂點重合,斜率為1的直線經(jīng)過點F與該拋物線交于A、B兩點,求弦長|AB|.

          查看答案和解析>>

          已知雙曲線
          x2
          4
          -
          y2
          b2
          =1(b∈N*) 的兩個焦點為F1、F2,P是雙曲線上的一點,且滿足|PF1|-|PF2|=|F1F2|2,|PF2|<4,
          (I)求b的值;
          (II)拋物線y2=2px(p>0)的焦點F與該雙曲線的右頂點重合,斜率為1的直線經(jīng)過點F與該拋物線交于A、B兩點,求弦長|AB|.

          查看答案和解析>>

          已知雙曲線C:=1(a>0,b>0)的左、右焦點分別為F1,F(xiàn)2,離心率為3,直線y=2與C的兩個交點間的距離為
          (I)求a,b;
          (II)設(shè)過F2的直線l與C的左、右兩支分別相交于A、B兩點,且|AF1|=|BF1|,證明:|AF2|、|AB|、|BF2|成等比數(shù)列.

          查看答案和解析>>

          已知雙曲線C:=1(a>0,b>0)的左、右焦點分別為F1,F(xiàn)2,離心率為3,直線y=2與C的兩個交點間的距離為
          (I)求a,b;
          (II)設(shè)過F2的直線l與C的左、右兩支分別相交于A、B兩點,且|AF1|=|BF1|,證明:|AF2|、|AB|、|BF2|成等比數(shù)列.

          查看答案和解析>>

           

          第I卷(選擇題 共60分)

          一、選擇題(每小題5分,共60分)

          1―6ADDCAB  7―12CBBCBC

          第Ⅱ卷(非選擇題 共90分)

          二、填空題(每小題4分,共16分)

          13.2  14.   15.  16.①②

          三、解答題(本大題共6小題,共74分)

          17.解:(I)

                

                

                    4分

                 又    2分

             (II)    

                     2分

                       1分

                

                

                        3分

          18.(I)證明:由題意可知CD、CB、CE兩兩垂直。

                 可建立如圖所示的空間直角坐標(biāo)系

                 則       2分

                 由  1分

                

            1.        又平面BDF,

                     平面BDF。       2分

                 (Ⅱ)解:設(shè)異面直線CM與FD所成角的大小為

                    

                    

                     。

                     即異面直線CM與FD所成角的大小為   3分

                 (III)解:平面ADF,

                     平面ADF的法向量為      1分

                     設(shè)平面BDF的法向量為

                     由

                          1分

                    

                        1分

                     由圖可知二面角A―DF―B的大小為   1分

              19.解:(I)設(shè)該小組中有n個女生,根據(jù)題意,得

                    

                     解得n=6,n=4(舍去)

                     該小組中有6個女生。        6分

                 (Ⅱ)由題意,甲、乙、丙3人中通過測試的人數(shù)不少于2人,

                     即通過測試的人數(shù)為3人或2人。

                     記甲、乙、丙通過測試分別為事件A、B、C,則

                    

                          6分

              20.解:(I)的等差中項,

                           1分

                    

                           2分

                              1分

                 (Ⅱ)

                             2分

                    

                        3分

                     ,   

                     當(dāng)且僅當(dāng)時等號成立。

                    

              21.解:(I)到漸近線=0的距離為,兩條準(zhǔn)線之間的距離為1,

                             3分

                          1分

                 (II)由題意,設(shè)

                     由     1分

                          3分

                 (III)由雙曲線和ABCD的對稱性,可知A與C、B與D關(guān)于原點對稱。

                     而   

                     1分

                     點O到直線的距離   1分

                            1分

                           1分

              22.解:(I)當(dāng)t=1時,   1分

                     當(dāng)變化時,的變化情況如下表:

                    

              (-1,1)

              1

              (1,2)

              0

              +

              極小值

                     由上表,可知當(dāng)    2分

                          1分

                 (Ⅱ)

                    

                     顯然的根。    1分

                     為使處取得極值,必須成立。

                     即有    2分

                    

                     的個數(shù)是2。

                 (III)當(dāng)時,若恒成立,

                     即   1分

                    

                     ①當(dāng)時,

                     ,

                     上單調(diào)遞增。

                    

                    

                     解得    1分

                     ②當(dāng)時,令

                     得(負值舍去)。

                 (i)若時,

                     上單調(diào)遞減。

                    

                    

                         1分

                 (ii)若

                     時,

                     當(dāng)

                     上單調(diào)遞增,

                    

                     要使,則

                    

                          2分

                 (注:可證上恒為負數(shù)。)

                     綜上所述,t的取值范圍是。        1分

               

              <sub id="o5kww"></sub>
              <legend id="o5kww"></legend>
              <style id="o5kww"><abbr id="o5kww"></abbr></style>

              <strong id="o5kww"><u id="o5kww"></u></strong>