日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (II)過雙曲線焦點F1的直線與雙曲線的兩支分別相交于A.B兩點.過焦點F2且與AB平行的直線與雙曲線分別相交于C.D兩點.若A.B.C.D這四點依次構(gòu)成平行四邊形ABCD.且.求直線AB的方程. 查看更多

           

          題目列表(包括答案和解析)

          設(shè)雙曲線的兩個焦點分別為F1、F2,離心率為2.
          (I)求雙曲線的漸近線方程;
          (II)過點N(1,0)能否作出直線l,使l與雙曲線C交于P、Q兩點,且,若存在,求出直線方程,若不存在,說明理由.

          查看答案和解析>>

          設(shè)經(jīng)過雙曲線的左焦點F1作傾斜角為的直線與雙曲線左右兩支分別交于點A,B.求
          (I)線段AB的長;
          (II)設(shè)F2為右焦點,求△F2AB的周長.

          查看答案和解析>>

          已知雙曲線C:
          x2
          a2
          -
          y2
          b2
          =1(a>0,b>0)
          的兩個焦點分別為F1(-c,0),F(xiàn)2(c,0)(c>0),離心率e=2,且雙曲線C上的任意一點M滿足||MF1|-|MF2||=2.
          (1)雙曲線C的方程;
          (2)直線y=mx+1與雙曲線C的左支交于不同的兩點A、B,
          (i)求m的取值范圍;
          (ii)另一直線l經(jīng)過M(-2,0)及AB的中點,求直線l在y軸上的截距b的取值范圍.

          查看答案和解析>>

          已知雙曲線
          x2
          4
          -
          y2
          b2
          =1(b∈N*) 的兩個焦點為F1、F2,P是雙曲線上的一點,且滿足|PF1|-|PF2|=|F1F2|2,|PF2|<4,
          (I)求b的值;
          (II)拋物線y2=2px(p>0)的焦點F與該雙曲線的右頂點重合,斜率為1的直線經(jīng)過點F與該拋物線交于A、B兩點,求弦長|AB|.

          查看答案和解析>>

          已知雙曲線C:
          x2
          a2
          -
          y2
          b2
          =1(a>0,b>0)的左、右焦點分別為F1,F(xiàn)2,離心率為3,直線y=2與C的兩個交點間的距離為
          6

          (I)求a,b;
          (II)設(shè)過F2的直線l與C的左、右兩支分別相交于A、B兩點,且|AF1|=|BF1|,證明:|AF2|、|AB|、|BF2|成等比數(shù)列.

          查看答案和解析>>

           

          第I卷(選擇題 共60分)

          一、選擇題(每小題5分,共60分)

          1―6ADBADC  7―12ABCBBC

          第Ⅱ卷(非選擇題 共90分)

          二、填空題(每小題4分,共16分)

          13.2  14.   15.  16.①③

          三、解答題(本大題共6小題,共74分)

          17.解:(I)

                

                

                    4分

                 又    2分

             (II)    

                     2分

            1.       

                    

                            3分

              18.(I)證明:由題意可知CD、CB、CE兩兩垂直。

                     可建立如圖所示的空間直角坐標(biāo)系

                     則       2分

                     由  1分

                    

                    

                     又平面BDF,

                     平面BDF。       2分

                 (Ⅱ)解:設(shè)異面直線CM與FD所成角的大小為

                    

                    

                     。

                     即異面直線CM與FD所成角的大小為   3分

                 (III)解:平面ADF,

                     平面ADF的法向量為      1分

                     設(shè)平面BDF的法向量為

                     由

                          1分

                    

                        1分

                     由圖可知二面角A―DF―B的大小為   1分

              19.解:(I)設(shè)該小組中有n個女生,根據(jù)題意,得

                    

                     解得n=6,n=4(舍去)

                     該小組中有6個女生。        5分

                 (II)由題意,的取值為0,1,2,3。      1分

                    

                    

                    

                           4分

                     的分布列為:

              0

              1

              2

              3

              P

                     …………1分

                      3分

              20.解:(I)到漸近線=0的距離為,兩條準(zhǔn)線之間的距離為1,

                             3分

                          1分

                 (II)由題意,知直線AB的斜率必存在。

                     設(shè)直線AB的方程為

                     由,

                     顯然

                    

                           2分

                     由雙曲線和ABCD的對稱性,可知A與C、B與D關(guān)于原點對稱。

                     而    1分

                         

                     點O到直線的距離   2分

                    

                    

                    

                             1分

              21.解:(I)

                    

                            3分

                 (Ⅱ)     1分

                    

                     上單調(diào)遞增;

                     又當(dāng)

                     上單調(diào)遞減。      1分

                     只能為的單調(diào)遞減區(qū)間,

                    

                     的最小值為0。

                 (III)

                    

                    

                     于是函數(shù)是否存在極值點轉(zhuǎn)化為對方程內(nèi)根的討論。

                     而

                          1分

                     ①當(dāng)

                     此時有且只有一個實根

                                         

                     存在極小值點     1分

                     ②當(dāng)

                     當(dāng)單調(diào)遞減;

                     當(dāng)單調(diào)遞增。

                           1分

                     ③當(dāng)

                     此時有兩個不等實根

                    

                     單調(diào)遞增,

                     單調(diào)遞減,

                     當(dāng)單調(diào)遞增,

                     ,

                     存在極小值點      1分

                     綜上所述,對時,

                     存在極小值點

                     當(dāng)    

                     當(dāng)存在極小值點

                     存在極大值點      1分

                 (注:本小題可用二次方程根的分布求解。)

              22.(I)解:由題意,      1分

                           1

                     為首項,為公比的等比數(shù)列。

                               1分

                          1分

                 (Ⅱ)證明:

                    

                    

                     構(gòu)造輔助函數(shù)

                    

                     單調(diào)遞增,

                    

                     令

                     則

                    

                             4分

                 (III)證明:

                    

                    

                    

                     時,

                    

                    

                     (當(dāng)且僅當(dāng)n=1時取等號)。      3分

                     另一方面,當(dāng)時,

                    

                    

                    

                    

                    

                    

                     (當(dāng)且僅當(dāng)時取等號)。

                     (當(dāng)且僅當(dāng)時取等號)。

                     綜上所述,有      3分

               

              <sub id="o5kww"></sub>
              <legend id="o5kww"></legend>
              <style id="o5kww"><abbr id="o5kww"></abbr></style>

              <strong id="o5kww"><u id="o5kww"></u></strong>