日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. [解答](I)由題意及正弦定理.得. 查看更多

           

          題目列表(包括答案和解析)

          設數(shù)列的各項均為正數(shù).若對任意的,存在,使得成立,則稱數(shù)列為“Jk型”數(shù)列.

          (1)若數(shù)列是“J2型”數(shù)列,且,,求;

          (2)若數(shù)列既是“J3型”數(shù)列,又是“J4型”數(shù)列,證明:數(shù)列是等比數(shù)列.

          【解析】1)中由題意,得,,,…成等比數(shù)列,且公比,

          所以.

          (2)中證明:由{}是“j4型”數(shù)列,得,…成等比數(shù)列,設公比為t. 由{}是“j3型”數(shù)列,得

          ,…成等比數(shù)列,設公比為

          ,…成等比數(shù)列,設公比為

          …成等比數(shù)列,設公比為

           

          查看答案和解析>>

          已知函數(shù)為實數(shù)).

          (Ⅰ)當時,求的最小值;

          (Ⅱ)若上是單調(diào)函數(shù),求的取值范圍.

          【解析】第一問中由題意可知:. ∵ ∴  ∴.

          時,; 當時,. 故.

          第二問.

          時,,在上有遞增,符合題意;  

          ,則,∴上恒成立.轉(zhuǎn)化后解決最值即可。

          解:(Ⅰ) 由題意可知:. ∵ ∴  ∴.

          時,; 當時,. 故.

          (Ⅱ) .

          時,,在上有遞增,符合題意;  

          ,則,∴上恒成立.∵二次函數(shù)的對稱軸為,且

            .   綜上

           

          查看答案和解析>>

          若函數(shù)在定義域內(nèi)存在區(qū)間,滿足上的值域為,則稱這樣的函數(shù)為“優(yōu)美函數(shù)”.

          (Ⅰ)判斷函數(shù)是否為“優(yōu)美函數(shù)”?若是,求出;若不是,說明理由;

          (Ⅱ)若函數(shù)為“優(yōu)美函數(shù)”,求實數(shù)的取值范圍.

          【解析】第一問中,利用定義,判定由題意得,由,所以

          第二問中, 由題意得方程有兩實根

          所以關于m的方程有兩實根,

          即函數(shù)與函數(shù)的圖像在上有兩個不同交點,從而得到t的范圍。

          解(I)由題意得,由,所以     (6分)

          (II)由題意得方程有兩實根

          所以關于m的方程有兩實根,

          即函數(shù)與函數(shù)的圖像在上有兩個不同交點。

           

          查看答案和解析>>

          已知函數(shù)取得極值

          (1)求的單調(diào)區(qū)間(用表示);

          (2)設,若存在,使得成立,求的取值范圍.

          【解析】第一問利用

          根據(jù)題意取得極值,

          對參數(shù)a分情況討論,可知

          時遞增區(qū)間:    遞減區(qū)間: ,

          時遞增區(qū)間:    遞減區(qū)間: ,

          第二問中, 由(1)知: ,

          ,

           

          從而求解。

          解:

          …..3分

          取得極值, ……………………..4分

          (1) 當時  遞增區(qū)間:    遞減區(qū)間: ,

          時遞增區(qū)間:    遞減區(qū)間: , ………….6分

           (2)  由(1)知: ,

          ,

           

          ……………….10分

          , 使成立

              得:

           

          查看答案和解析>>

          已知中,內(nèi)角的對邊的邊長分別為,且

          (I)求角的大小;

          (II)若的最小值.

          【解析】第一問,由正弦定理可得:sinBcosC=2sinAcosB-sinCcosB,即sin(B+C)=2sinAcosB,

          第二問,

          三角函數(shù)的性質(zhì)運用。

          解:(Ⅰ)由正弦定理可得:sinBcosC=2sinAcosB-sinCcosB,即sin(B+C)=2sinAcosB, 

          (Ⅱ)由(Ⅰ)可知 

          ,,則當 ,即時,y的最小值為

           

          查看答案和解析>>


          同步練習冊答案