日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 19. 查看更多

           

          題目列表(包括答案和解析)

          ( 本題滿分12分 )
          已知函數(shù)f(x)=cos4x-2sinxcosx-sin4x
          (I)求f(x)的最小正周期;
          (II)若x∈[0,
          π2
          ]
          ,求f(x)的最大值,最小值.

          查看答案和解析>>

          (本題滿分12分)     已知函數(shù).

          (Ⅰ) 求f 1(x);

          (Ⅱ) 若數(shù)列{an}的首項(xiàng)為a1=1,(nÎN+),求{an}的通項(xiàng)公式an;

          (Ⅲ)  設(shè)bn=(32n-8),求數(shù)列{bn}的前項(xiàng)和Tn

          查看答案和解析>>

          (本題滿分12分)已知函數(shù)f(x)=x3+ax2+bx+c,曲線y=f(x)在x=1處的切線不過第四象限且斜率為3,又坐標(biāo)原點(diǎn)到切線的距離為,若x=時,y=f(x)有極值.

          (1)求a、b、c的值;w.w.w.k.s.5.u.c.o.m    

          (2)求y=f(x)在[-3,1]上的最大值和最小值.

          查看答案和解析>>

          (本題滿分12分) 已知數(shù)列{an}滿足

             (Ⅰ)求數(shù)列的前三項(xiàng):a1,a2,a3;

             (Ⅱ)求證:數(shù)列{}為等差數(shù)列. w.w.w.k.s.5.u.c.o.m    

          (Ⅲ)求數(shù)列{an}的前n項(xiàng)和Sn.

          查看答案和解析>>

          (本題滿分12分)   已知函數(shù)

             (Ⅰ)當(dāng)的 單調(diào)區(qū)間;

             (Ⅱ)當(dāng)的取值范圍。

          查看答案和解析>>

           

          一、選擇題

          AACCD   BBDDD   AC

          二、填空題

          13.    14.6    15.①⑤    16.

          三、解答題

          17.解:(Ⅰ)因?yàn)?sub>

          由正弦定理,得,              ……3分

          整理,得

          因?yàn)?sub>、的三內(nèi)角,所以,    

          因此  .                                                 ……6分

            1. 20090520

              由余弦定理,得,所以,      ……10分

              解方程組,得 .                       ……12分

              18.解:記 “過第一關(guān)”為事件A,“第一關(guān)第一次過關(guān)”為事件A1,“第一關(guān)第二次過關(guān)”為事件A2;“過第二關(guān)”為事件B, “第二關(guān)第一次過關(guān)”為事件B1,“第二關(guān)第二次過關(guān)”為事件B2

              (Ⅰ)該同學(xué)獲得900元獎金,即該同學(xué)順利通過第一關(guān),但未通過第二關(guān),則所求概率為

              .              ……………………………3分

              (Ⅱ)該同學(xué)通過第一關(guān)的概率為:

              , ……………………5分

              該同學(xué)通過第一、二關(guān)的概率為:

                       

              ,   ………………………7分

               ∴ 在該同學(xué)已順利通過第一關(guān)的條件下,他獲3600元獎金的概率是

              .     ………………………………………………………8分

              (Ⅲ)該同學(xué)獲得獎金額可能取值為:0 元,900 元, 3600 元.………9分

               ,  ……………………………10分    

              , 

              ,         

              (另解:=1-

                     ∴  . ……12分

              19.(本題滿分12分)

              解: (Ⅰ)當(dāng)中點(diǎn)時,有∥平面.…1分

              證明:連結(jié)連結(jié),

              ∵四邊形是矩形  ∴中點(diǎn)

              ∥平面,

              平面,平面

              ,------------------4分

              的中點(diǎn).------------------5分

              (Ⅱ)建立空間直角坐標(biāo)系如圖所示,

              ,,,

              , ------------7分

              所以

              設(shè)為平面的法向量,

              則有,

              ,可得平面的一個

              法向量為,              ----------------9分

              而平面的法向量為,    ---------------------------10分

              所以,

              所以二面角的余弦值為----------------------------12分

              學(xué)科網(wǎng)(Zxxk.Com)20.(Ⅰ)設(shè)橢圓C的方程為

              則由題意知

              ∴橢圓C的方程為      ……………………4分

              (Ⅱ)假設(shè)右焦點(diǎn)可以為的垂心,

              ,∴直線的斜率為,

              從而直線的斜率為1.設(shè)其方程為, …………………………………5分

              聯(lián)立方程組,

              整理可得:   ……………6分.

                     ,∴

              設(shè),則,

              .……………7分

                     于是

                    

              解之得.    ……………10分

              當(dāng)時,點(diǎn)即為直線與橢圓的交點(diǎn),不合題意;

              當(dāng)時,經(jīng)檢驗(yàn)知和橢圓相交,符合題意.

              所以,當(dāng)且僅當(dāng)直線的方程為時,

              點(diǎn)的垂心.…………12分  

              21.解:(Ⅰ)的導(dǎo)數(shù)

              ,解得;令,

              解得.………………………2分

              從而內(nèi)單調(diào)遞減,在內(nèi)單調(diào)遞增.

              所以,當(dāng)時,取得最小值.……………………………5分

              (II)因?yàn)椴坏仁?sub>的解集為P,且,

              所以,對任意的,不等式恒成立,……………………………6分

              ,得

              當(dāng)時,上述不等式顯然成立,故只需考慮的情況!7分

              變形為  ………………………………………………8分

              ,則

                     令,解得;令,

              解得.…………………………10分

                     從而內(nèi)單調(diào)遞減,在內(nèi)單調(diào)遞增.

              所以,當(dāng)時,

              取得最小值,從而,

              所求實(shí)數(shù)的取值范圍是.………………12分

              22.解:(Ⅰ)當(dāng)時,    

               。á颍┰中,

                在中,,

              當(dāng)時,中第項(xiàng)是,

              中的第項(xiàng)是,

              所以中第項(xiàng)與中的第項(xiàng)相等.

              當(dāng)時,中第項(xiàng)是,

              中的第項(xiàng)是

              所以中第項(xiàng)與中的第項(xiàng)相等.

                ∴ 

              (Ⅲ)

                

              +

              當(dāng)且僅當(dāng),等號成立.

              ∴當(dāng)時,最。

               

              <sub id="o5kww"></sub>
              <legend id="o5kww"></legend>
              <style id="o5kww"><abbr id="o5kww"></abbr></style>

              <strong id="o5kww"><u id="o5kww"></u></strong>