【題目】如圖,AB∥CD,AB=CD,點E、F在BC上,且BF=CE.
(1)求證:△ABE≌△DCF;
(2)試證明:以A、F、D、E為頂點的四邊形是平行四邊形.
科目:初中數(shù)學 來源: 題型:
【題目】圖1所示的遮陽傘,傘柄垂直于水平地面,其示意圖如圖2、當傘收緊時,點P與點A重合;當傘慢慢撐開時,動點P由A向B移動;當點P到達點B時,傘張得最開、已知傘在撐開的過程中,總有PM=PN=CM=CN=6.0分米,CE=CF=18.0分米,BC=2.0分米、設AP=x分米.
(1)求x的取值范圍;
(2)若∠CPN=60°,求x的值;
(3)設陽光直射下,傘下的陰影(假定為圓面)面積為y,求y關(guān)于x的關(guān)系式(結(jié)果保留π).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線y=x+2與坐標軸交于A、B兩點,點A在x軸上,點B在y軸上,C點的坐標為(1,0),拋物線y=ax2+bx+c經(jīng)過點A、B、C.
(1)求該拋物線的解析式;
(2)根據(jù)圖象直接寫出不等式ax2+(b﹣1)x+c>2的解集;
(3)點P是拋物線上一動點,且在直線AB上方,過點P作AB的垂線段,垂足為Q點.當PQ=時,求P點坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我國邊防局接到情報,近海處有一可疑船只正向公海方向行駛,邊防部迅速派出快艇
追趕(如圖1) .圖2中
分別表示兩船相對于海岸的距離
(海里)與追趕時間
(分)之間的關(guān)系.根據(jù)圖象問答問題:
(1)①直線與直線
中 表示
到海岸的距離與追趕時間之間的關(guān)系;
②與
比較 速度快;
③如果一直追下去,那么________ (填 “能”或“不能")追上
;
④可疑船只速度是 海里/分,快艇
的速度是 海里/分;
(2)與
對應的兩個一次函數(shù)表達式
與
中
的實際意義各是什么?并直接寫出兩個具體表達式.
(3)分鐘內(nèi)
能否追上
?為什么?
(4)當逃離海岸
海里的公海時,
將無法對其進行檢查,照此速度,
能否在
逃入公海前將其攔截?為什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一枚運載火箭從距雷達站C處5km的地面O處發(fā)射,當火箭到達點A,B時,在雷達站C測得點A,B的仰角分別為34°,45°,其中點O,A,B在同一條直線上.
(1)求A,B兩點間的距離(結(jié)果精確到0.1km).
(2)當運載火箭繼續(xù)直線上升到D處,雷達站測得其仰角為56°,求此時雷達站C和運載火箭D兩點間的距離(結(jié)果精確到0.1km).(參考數(shù)據(jù):sin34°=0.56,cos34°=0.83,tan34°=0.67.)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知是等邊三角形,點
是
的中點,
點在射線
上,
點在射線
上,
,
(1)如圖1,若點與點
重合,求證:
.
(2)如圖2,若點在線段
上,點
在線段
上,
求
的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某書店老板去圖書批發(fā)市場購買某種圖書,第一次用元購書若干本, 并按該書定價
元出售,很快售完.由于該書暢銷,第二次購書時,每本書的批發(fā)價已比第一次提高了
,他用
元所購該書數(shù)量比第一次多
本.當按定價
元售出
本時,出現(xiàn)滯銷,便以定價的
折售完剩余的書.
每本書第一次的批發(fā)價是多少錢?
試問該老板這兩次售書總體上是賠錢了,還是賺錢了(不考慮其它因素)?若賠錢,賠多少?若賺錢,賺多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com