【題目】如圖,等邊△ABC中,D是邊BC上的一點(diǎn),且BD:DC=1:3,把△ABC折疊,使點(diǎn)A落在邊BC上的點(diǎn)D處,那么的值為_____.
【答案】
【解析】
解:∵BD:DC=1:3,
∴設(shè)BD=a,則CD=3a,
∵△ABC是等邊三角形,
∴AB=BC=AC=4a,∠ABC=∠ACB=∠BAC=60°,
由折疊的性質(zhì)可知:MN是線(xiàn)段AD的垂直平分線(xiàn),
∴AM=DM,AN=DN,
∴BM+MD+BD=5a,DN+NC+DC=7a,
∵∠MDN=∠BAC=∠ABC=60°,
∴∠NDC+∠MDB=∠BMD+∠MBD=120°,
∴∠NDC=∠BMD,
∵∠ABC=∠ACB=60°,
∴△BMD∽△CDN,
∴(BM+MD+BD):(DN+NC+CD)=AM:AN,
即AM:AN=5:7,
故答案為 .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠B=30°,∠C=45°,AD平分∠BAC交BC于點(diǎn)D,DE⊥AB,垂足為E。若DE=1,則BC的長(zhǎng)為( )
A.2+B.
C.
D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了加強(qiáng)學(xué)生課外閱讀,開(kāi)闊視野,某校開(kāi)展了“書(shū)香校園,誦讀經(jīng)典”活動(dòng),學(xué)校隨機(jī)抽查了部分學(xué)生,對(duì)他們每天的課外閱讀時(shí)間進(jìn)行調(diào)查,并將調(diào)查統(tǒng)計(jì)的結(jié)果分為四類(lèi):每天誦讀時(shí)間分鐘的學(xué)生記為
類(lèi),20分鐘
分鐘記為
類(lèi),40分鐘
分鐘記為
類(lèi),
分鐘記為
類(lèi),收集的數(shù)據(jù)繪制如下兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)根據(jù)圖中提供的信息,解答下列問(wèn)題:
(1)這次共抽取了__________名學(xué)生進(jìn)行調(diào)查統(tǒng)計(jì),扇形統(tǒng)計(jì)圖中類(lèi)所對(duì)應(yīng)的扇形圓心角大小為___________;
(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)如果該校共有2000名學(xué)生,請(qǐng)你估計(jì)該校類(lèi)學(xué)生約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=ax2+bx﹣3a經(jīng)過(guò)點(diǎn)A(﹣1,0)、C(0,3),與x軸交于另一點(diǎn)B,拋物線(xiàn)的頂點(diǎn)為D.
(1)求此二次函數(shù)解析式;
(2)連接DC、BC、DB,求證:△BCD是直角三角形;
(3)在對(duì)稱(chēng)軸右側(cè)的拋物線(xiàn)上是否存在點(diǎn)P,使得△PDC為等腰三角形?若存在,求出符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,小葉與小高欲測(cè)量公園內(nèi)某棵樹(shù)DE的高度.他們?cè)谶@棵樹(shù)正前方的一座樓亭前的臺(tái)階上的點(diǎn)A處測(cè)得這棵樹(shù)頂端D的仰角為30°,朝著這棵樹(shù)的方向走到臺(tái)階下的點(diǎn)C處,測(cè)得這棵樹(shù)頂端D的仰角為60°.已知點(diǎn)A的高度AB為3 m,臺(tái)階AC的坡度為1∶,且B,C,E三點(diǎn)在同一條直線(xiàn)上,那么這棵樹(shù)DE的高度為( )
A. 6 m B. 7 m C. 8 m D. 9 m
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在矩形ABCD中,P為CD邊上一點(diǎn)(DP<CP),∠APB=90°.將△ADP沿AP翻折得到△AD′P,PD′的延長(zhǎng)線(xiàn)交邊AB于點(diǎn)M,過(guò)點(diǎn)B作BN∥MP交DC于點(diǎn)N.
(1)求證:AD2=DPPC;
(2)請(qǐng)判斷四邊形PMBN的形狀,并說(shuō)明理由;
(3)如圖2,連接AC,分別交PM,PB于點(diǎn)E,F(xiàn).若=
,求
的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,菱形ABCD對(duì)角線(xiàn)交于點(diǎn)E,△ABD的外接圓⊙O交AC于點(diǎn)F.若FB=FC.
(1)證明:=FEFA;
(2)證明:BC是⊙O的切線(xiàn);
(3)若EF=2,求出四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問(wèn)題探究,
(1)如圖①,在矩形ABCD中,AB=2AD,P為CD邊上的中點(diǎn),試比較∠APB和∠ADB的大小關(guān)系,并說(shuō)明理由;
(2)如圖②,在正方形ABCD中,P為CD上任意一點(diǎn),試問(wèn)當(dāng)P點(diǎn)位于何處時(shí)∠APB最大?并說(shuō)明理由;
問(wèn)題解決
(3)某兒童游樂(lè)場(chǎng)的平面圖如圖③所示,場(chǎng)所工作人員想在OD邊上點(diǎn)P處安裝監(jiān)控裝置,用來(lái)監(jiān)控OC邊上的AB段,為了讓監(jiān)控效果最佳,必須要求∠APB最大,已知:∠DOC=60°,OA=400米,AB=200米,問(wèn)在OD邊上是否存在一點(diǎn)P,使得∠APB最大,若存在,請(qǐng)求出此時(shí)OP的長(zhǎng)和∠APB的度數(shù);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】龍人文教用品商店欲購(gòu)進(jìn)、
兩種筆記本,用160元購(gòu)進(jìn)的
種筆記本與用240元購(gòu)進(jìn)的
種筆記本數(shù)量相同,每本
種筆記本的進(jìn)價(jià)比每本
種筆記本的進(jìn)價(jià)貴10元.
(1)求、
兩種筆記本每本的進(jìn)價(jià)分別為多少元?
(2)若該商店準(zhǔn)備購(gòu)進(jìn)、
兩種筆記本共100本,且購(gòu)買(mǎi)這兩種筆記本的總價(jià)不超過(guò)2650元,則至少購(gòu)進(jìn)
種筆記本多少本?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com