日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,已知在平面直角坐標(biāo)系中,點軸上,點、軸上,,,點的坐標(biāo)是,

          1)求三個頂點、的坐標(biāo);

          2)連接、,并用含字母的式子表示的面積();

          3)在(2)問的條件下,是否存在點,使的面積等于的面積?如果存在,請求出點的坐標(biāo);若不存在,請說明理由.

          【答案】1A0,-4),B-4,0),C6,0);(22a-44-2a,詳見解析;(3)存在,點P的坐標(biāo)為(-6,12)或(-6,-8

          【解析】

          1)根據(jù)三角形面積公式得到OA2=8,解得OA=4,則OB=OA=4,OC=BC-OB=6,然后根據(jù)坐標(biāo)軸上點的坐標(biāo)特征寫出△ABC三個頂點的坐標(biāo);
          2)分類討論:當(dāng)點P在在直線AB上方即a2;當(dāng)點P在直線AB下方,即a2;利用面積的和與差求解;
          3)先計算出SABC=20,利用(2)中的結(jié)果得到方程,然后分別求出a的值,從而確定P點坐標(biāo).

          解:(1)∵SABO=OA×OB
          OA=OB,

          OA2=8,解得OA=4
          OB=OA=4,
          OC=BC-OB=10-4=6,
          A0-4),B-4,0),C60);
          2)當(dāng)點P在第二象限,直線AB的上方,即a2,作PHy軸于H,如圖,

          SPAB=SAOB+S梯形BOHP-SPAH=8+4+6×a-×6×a+4=2a-4;
          當(dāng)點P在直線AB下方,即a2,作PHx軸于H,如圖,

          SPAB=S梯形OHPA-SPBH-SOAB=-a+4×6-×6-4×-a-8=4-2a;

          3SABC=×10×4=20,
          當(dāng)2a-4=20,
          解得a=12
          此時P點坐標(biāo)為(-6,12);
          當(dāng)4-2a=20,
          解得a=-8
          此時P點坐標(biāo)為(-6,-8).
          綜上所述,點P的坐標(biāo)為(-6,12)或(-6,-8).

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】數(shù)軸上的點表示的數(shù)是5,點表示的數(shù)是,這兩點都以每秒一個單位長度的速度在數(shù)軸上各自朝某個方向運動,且兩點同時開始運動:

          1)若點向右運動,則兩秒后點表示的數(shù)是_______;(直接寫結(jié)果)

          2)若點向左運動,點向右運動,當(dāng)這兩點相遇時點表示的數(shù)是多少?

          3)同時運動3秒后,這兩點相距多遠(yuǎn)?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在△ABC中,已知AC=BC=5,AB=6,點E是線段AB上的動點(不與端點重合),點F是線段AC上的動點,連接CE、EF,若在點E、點F的運動過程中,始終保證∠CEF=∠B.當(dāng)以點C為圓心,以CF為半徑的圓與AB相切時,則BE的長為_________

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知點P為∠AOB的角平分線上的一點,點D在邊OA上.在邊OB上取一點E,使得PE=PD.

          1)用圓規(guī)作出所有符合條件的點E;

          2)寫出∠OEP與∠ODP的數(shù)量關(guān)系,并加以證明.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】若關(guān)于x的三個方程x2+4mx+4m2+2m+3=0,x2+(2m+1)x+m2=0,(m﹣1)x2+2mx+m﹣1=0中至少有一個方程有實根,則m的取值范圍是_____

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,,C=90°,,,若動點P從點C開始,的路徑運動,且速度為每秒1cm,設(shè)出發(fā)的時間為t秒.

          P出發(fā)2秒后,CPBP的長.

          t滿足什么條件時的值或取值范圍,為直角三角形?

          另有一點Q,從點C開始,的路徑運動,且速度為每秒2cm,PQ兩點同時出發(fā),當(dāng)P、Q中有一點到達(dá)終點時,另一點也停止運動當(dāng)t為何值時,直線PQ的周長分成相等的兩部分?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】(1)如圖,陰影部分是由5個小正方形組成的一個直角圖形,請用3種方法分別在下圖方格內(nèi)添涂黑二個小正方形,使陰影部分成為軸對稱圖形.

          2)如圖,在長度為1個單位長度的小正方形組成的正方形中,點AB、C在小正方形的頂點上.

          ①在圖中畫出與△ABC關(guān)于直線l成軸對稱的△ABC

          ②△ABC的面積為____________;

          ③在直線l上找一點P,使PBPC的長最短.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖甲,在△ABC中,∠ACB為銳角.點D為射線BC上一動點,連接AD,以AD為一邊且在AD的右側(cè)作正方形ADEF

          解答下列問題:

          1)如果AB=AC,∠BAC=90

          當(dāng)點D在線段BC上時(與點B不重合),如圖乙,線段CF、BD之間的位置關(guān)系為 ,數(shù)量關(guān)系為

          當(dāng)點D在線段BC的延長線上時,如圖丙,中的結(jié)論是否仍然成立,為什么?

          2)如果AB≠AC,∠BAC≠90,點D在線段BC上運動.

          試探究:當(dāng)△ABC滿足一個什么條件時,CF⊥BC(點C、F重合除外)?畫出相應(yīng)圖形,并說明理由.(畫圖不寫作法)

          3)若ACBC=3,在(2)的條件下,設(shè)正方形ADEF的邊DE與線段CF相交于點P,求線段CP長的最大值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖1,直線ABx軸、y軸分別相交于點A、B,將線段AB繞點A順時針旋轉(zhuǎn)90°,得到AC,連接BC,將ABC沿射線BA平移,當(dāng)點C到達(dá)x軸時運動停止.設(shè)平移距離為m,平移后的圖形在x軸下方部分的面積為S,S關(guān)于m的函數(shù)圖象如圖2所示(其中0<m≤a,a<m≤b時,函數(shù)的解析式不同).

          (1)填空:ABC的面積為

          (2)求直線AB的解析式;

          (3)求S關(guān)于m的解析式,并寫出m的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊答案