日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,某廣場(chǎng)設(shè)計(jì)的一建筑物造型的縱截面是拋物線的一部分,拋物線的頂點(diǎn)O落在水平面上,對(duì)稱軸是水平線OC.點(diǎn)A、B在拋物線造型上,且點(diǎn)A到水平面的距離AC=4米,點(diǎn)B到水平面距離為2米,OC=8米.

          1)請(qǐng)建立適當(dāng)?shù)闹苯亲鴺?biāo)系,求拋物線的函數(shù)解析式;

          2)為了安全美觀,現(xiàn)需在水平線OC上找一點(diǎn)P,用質(zhì)地、規(guī)格已確定的圓形鋼管制作兩根支柱PAPB對(duì)拋物線造型進(jìn)行支撐加固,那么怎樣才能找到兩根支柱用料最。ㄖеc地面、造型對(duì)接方式的用料多少問題暫不考慮)時(shí)的點(diǎn)P?(無需證明)

          3)為了施工方便,現(xiàn)需計(jì)算出點(diǎn)O、P之間的距離,那么兩根支柱用料最省時(shí)點(diǎn)O、P之間的距離是多少?(不寫求解過程)

          【答案】1)拋物線的函數(shù)解析式為:y=x2;

          2)找法見解析

          3)兩根支柱用料最省時(shí),點(diǎn)O、P之間的距離是4米.

          【解析】

          1)根據(jù)題意可以建立合適的平面直角坐標(biāo)系,從而可以求得拋物線的解析式;

          2)根據(jù)兩點(diǎn)之間線段最多,作出相應(yīng)的圖形,寫出作法即可;

          3)根據(jù)前面的坐標(biāo)系和拋物線解析式可以求得點(diǎn)B的坐標(biāo),再根據(jù)三角形相似可以求得兩根支柱用料最省時(shí)點(diǎn)O、P之間的距離,注意此處只寫出答案即可.

          解:(1)如圖,

          以點(diǎn)O為原點(diǎn)、射線OCy軸的正半軸建立直角坐標(biāo)系,

          設(shè)拋物線的函數(shù)解析式為y=ax2,

          由題意知點(diǎn)A的坐標(biāo)為(48).

          ∵點(diǎn)A在拋物線上,

          8=a×42,

          解得a=,

          ∴所求拋物線的函數(shù)解析式為:y=x2;

          2)找法:

          延長AC,交建筑物造型所在拋物線于點(diǎn)D,

          則點(diǎn)A、D關(guān)于OC對(duì)稱.

          連接BDOC于點(diǎn)P,則點(diǎn)P即為所求.

          3)如上圖,由題意知點(diǎn)B的橫坐標(biāo)為2

          ∵點(diǎn)B在拋物線上,

          ∴點(diǎn)B的坐標(biāo)為(22),

          又∵點(diǎn)A的坐標(biāo)為(4,8),

          ∴點(diǎn)D的坐標(biāo)為(﹣4,8),

          設(shè)直線BD的函數(shù)解析式為y=kx+b,

          解得:k=1,b=4

          ∴直線BD的函數(shù)解析式為y=x+4

          x=0代入y=x+4,得點(diǎn)P的坐標(biāo)為(0,4),

          兩根支柱用料最省時(shí),點(diǎn)O、P之間的距離是4米.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,將等邊△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)120°得到△EDC,連接AD,BD.則下列結(jié)論:

          ①AC=AD;②BD⊥AC;四邊形ACED是菱形.

          其中正確的個(gè)數(shù)是( )

          A0 B1 C2 D3

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在△ABC中,DBC上,若AD=BD,AB=AC=CD,則∠BAC=_________

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知:四邊形ABCD中,AC為對(duì)角線,∠DAC=∠BCA,且ADBC,CDAD于點(diǎn)D。

          1)如圖1,求證:四邊形ABCD是矩形。

          2)如圖2,點(diǎn)E和點(diǎn)F分別為邊AB和邊BC的中點(diǎn),連接DE、DF分別交AC于點(diǎn)G和點(diǎn)H,連接BG,在不連接其它線段的情況下,請(qǐng)寫出所有面積是FHC面積的2倍的所有三角形。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,二次函數(shù)y=﹣x2+x+2x軸于點(diǎn)A.BAB的右側(cè)),與y軸交于點(diǎn)C,D為第一象限拋物線上的動(dòng)點(diǎn),則△ACD面積的最大值是_____

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知拋物線y=x2+bx+cx軸交于點(diǎn)A(﹣1,0)和點(diǎn)B30),與y軸交于點(diǎn)C,連接BC交拋物線的對(duì)稱軸于點(diǎn)E、D是拋物線的頂點(diǎn).

          1)求此拋物線的解析式;

          2)求點(diǎn)C和點(diǎn)D的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】(1)如圖1,△ABC中,∠BAC=90°,AB=AC,D,EBC上,∠DAE=45°,為了探究BD,DE,CE之間的等量關(guān)系,現(xiàn)將△AECA順時(shí)針旋轉(zhuǎn)90°后成△AFB,連接DF,經(jīng)探究,你所得到的BD,DE,CE之間的等量關(guān)系式是 ;(無須證明)

          (2)如圖2,在△ABC中,∠BAC=120°,AB=AC,D,EBC上,∠DAE=60°,∠ADE=45°,試仿照(1)的方法,利用圖形的旋轉(zhuǎn)變換,探究BD,DE,CE之間的等量關(guān)系,并證明你的結(jié)論.

                

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】安徽郎溪農(nóng)民張大伯為了致富奔小康,大力發(fā)展家庭養(yǎng)殖業(yè).他準(zhǔn)備用長的木欄圍一個(gè)矩形的羊圈,為了節(jié)約材料同時(shí)要使矩形的面積最大,他利用了自家房屋一面長的墻,設(shè)計(jì)了如圖所示的一個(gè)矩形羊圈.

          1)請(qǐng)你求出張大伯的矩形羊圈的面積;

          2)請(qǐng)你判斷他的設(shè)計(jì)方案是否合理?如果合理,直接答合理;如果不合理又該如何設(shè)計(jì)?并說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某數(shù)學(xué)課外興趣小組成員在研究下面三個(gè)有聯(lián)系的問題,請(qǐng)你幫助他們解決:

          1)如圖1,矩形ABCD中,ABa,BCb,點(diǎn)EF分別在AB,DC上,點(diǎn)GH分別在AD,BC上且EFGH,求的值.

          2)如圖2,矩形ABCD中,AB4,BC3,將矩形對(duì)折,使得B、D重疊,折痕為EF,求EF的長.

          3)如圖3,四邊形ABCD中,∠ABC90°,ABAD8,BCCD4,AMDN,點(diǎn)MN分別在邊BC,AB上,求的值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案