【題目】如圖①,數(shù)軸上的點(diǎn)A、B分別表示數(shù)a、b,則點(diǎn)A、B(點(diǎn)B在點(diǎn)A的右側(cè))之間的距離表示為AB=b﹣a,若點(diǎn)C對(duì)應(yīng)的數(shù)為c,滿足|a+3|+(c﹣9)2=0.
(1)寫出AC的值 .
(2)如圖②,點(diǎn)D在點(diǎn)C的右側(cè)且距離m(m>0)個(gè)單位,點(diǎn)B在線段AC上,滿足AB+AC=BD,求AB的值(用含有m的代數(shù)式表示).
(3)如圖③,若點(diǎn)D在點(diǎn)C的右側(cè)6個(gè)單位處,點(diǎn)P從點(diǎn)A出發(fā)以2個(gè)單位/秒的速度向右運(yùn)動(dòng),同時(shí)點(diǎn)M從點(diǎn)C出發(fā)以1個(gè)單位/秒的速度也向右運(yùn)動(dòng),當(dāng)?shù)竭_(dá)D點(diǎn)后以原來的速度向相反的方向運(yùn)動(dòng).求經(jīng)過多長(zhǎng)時(shí)間,點(diǎn)P和點(diǎn)M之間的距離是2個(gè)單位?
【答案】(1)12;(2)AB=m;(3)
或
.
【解析】
(1)利用非負(fù)數(shù)的性質(zhì)求出a,c的值即可解決問題.
(2)由AB+AC=BD,推出AB+AB+BC=BC+CD,推出2AB=CD=m,即可解決問題.
(3)設(shè)經(jīng)過x秒點(diǎn)P和點(diǎn)M之間的距離是2個(gè)單位.分兩種情形構(gòu)建方程即可解決問題.
解:(1)∵|a+3|+(c﹣9)2=0,
又∵|a+3|≥0,(c﹣9)2≥0,
∴a=﹣3,c=9,
∴AC=9﹣(﹣3)=12,
故答案為12.
(2)∵AB+AC=BD,
∴AB+AB+BC=BC+CD,
∴2AB=CD=m,
∴AB=m.
(3)設(shè)經(jīng)過x秒點(diǎn)P和點(diǎn)M之間的距離是2個(gè)單位.
由題意:18﹣(2t+t﹣6)=2或(2t+t﹣6)﹣18=2,
解得t=或
.
∴經(jīng)過或
秒點(diǎn)P和點(diǎn)M之間的距離是2個(gè)單位.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖甲,點(diǎn)C將線段AB分成兩部分(AC>BC),如果 =
,那么稱點(diǎn)C為線段AB的黃金分割點(diǎn).某數(shù)學(xué)興趣小組在進(jìn)行課題研究時(shí),由黃金分割點(diǎn)聯(lián)想到“黃金分割線”,類似地給出“黃金分割線”的定義:直線l將一個(gè)面積為S的圖形分成面積分別為S1 , S2(S1>S2)的兩部分,如果
=
,那么稱直線l為該圖形的黃金分割線.
(1)如圖乙,在△ABC中,∠A=36°,AB=AC,∠ACB的平分線交AB于點(diǎn)D,請(qǐng)問點(diǎn)D是否是AB邊上的黃金分割點(diǎn),并證明你的結(jié)論;
(2)若△ABC在(1)的條件下,如圖丙,請(qǐng)問直線CD是不是△ABC的黃金分割線,并證明你的結(jié)論;
(3)如圖丁,在Rt△ABC中,∠ACB=90°,D為斜邊AB上的一點(diǎn),(不與A,B重合)過D作DE⊥BC于點(diǎn)E,連接AE,CD相交于點(diǎn)F,連接BF并延長(zhǎng),與DE,AC分別交于點(diǎn)G,H.請(qǐng)問直線BH是直角三角形ABC的黃金分割線嗎?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,過點(diǎn)A作AE⊥BC,垂足為E,連接DE,F(xiàn)為線段DE上一點(diǎn),且∠AFE=∠B.若AB=8,AD=6 ,AF=4
,則AE的長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下列銀行標(biāo)志,從圖案看既是軸對(duì)稱圖形又是中心對(duì)稱圖形的有( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在三角形AOB和三角形COD中,∠AOB=∠COD,
(1)已知∠AOB=90°,把兩個(gè)三角形拼成如圖①所示的圖案,當(dāng)∠BOD=30°時(shí),求∠AOC的度數(shù).
(2)已知∠AOB=90°,把兩個(gè)三角形拼成如圖②所示的圖案,當(dāng)∠AOC=2∠BOD時(shí),求∠BOD的度數(shù).
(3)當(dāng)∠AOB=α時(shí),把兩個(gè)三角形拼成如圖③所示的圖案.用含有α的代數(shù)式表示∠AOC+∠BOD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC在平面直角坐標(biāo)系中的位置如圖所示.
(1)將△ABC向右平移6個(gè)單位,作出平移后的△A1B1C1,并寫出△A1B1C1各頂點(diǎn)的坐標(biāo);
(2)在y軸上是否存在點(diǎn)M,使得CM+BM最?若存在,求出點(diǎn)M坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知如圖為一幾何體的三視圖:主視圖和左視圖都是長(zhǎng)方形,俯視圖是等邊三角形
(1)寫出這個(gè)幾何體的名稱;
(2)若主視圖的高為10cm,俯視圖中三角形的邊長(zhǎng)為4cm,求這個(gè)幾何體的側(cè)面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,AB=CD,對(duì)角線AC,BD相交于點(diǎn)O,AE⊥BD于點(diǎn)E,CF⊥BD于點(diǎn)F,連接AF,CE,若DE=BF,則下列結(jié)論:①CF=AE;②OE=OF;③四邊形ABCD是平行四邊形;④圖中共有四對(duì)全等三角形.其中正確結(jié)論的個(gè)數(shù)是
A.4 B.3 C.2 D.1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)O為直線AB上一點(diǎn),過點(diǎn)O作射線OC,使∠BOC=135°,將一個(gè)含45°角的直角三角尺的一個(gè)頂點(diǎn)放在點(diǎn)O處,斜邊OM與直線AB重合,另外兩條直角邊都在直線AB的下方.
(1)將圖1中的三角尺繞著點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,如圖2所示,此時(shí)∠BOM=_____;在圖2中,OM是否平分∠CON?請(qǐng)說明理由;
(2)緊接著將圖2中的三角板繞點(diǎn)O逆時(shí)針繼續(xù)旋轉(zhuǎn)到圖3的位置所示,使得ON在∠AOC的內(nèi)部,請(qǐng)?zhí)骄浚骸?/span>AOM與∠CON之間的數(shù)量關(guān)系,并說明理由;
(3)將圖1中的三角板繞點(diǎn)O按每秒5°的速度沿逆時(shí)針方向旋轉(zhuǎn)一周,在旋轉(zhuǎn)的過程中,第t秒時(shí),直線ON恰好平分銳角∠AOC,則t的值為_____(直接寫出結(jié)果).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com