日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,已知AB是⊙O的直徑,且AB=4,點C在半徑OA上(點C與點O、點A不重合),過點CAB的垂線交⊙O于點D.連接OD,過點BOD的平行線交⊙O于點E,交CD的延長線于點F.

          (1)若點E的中點,求∠F的度數(shù);

          (2)求證:BE=2OC;

          (3)設(shè)AC=x,則當(dāng)x為何值時BEEF的值最大?最大值是多少?

          【答案】(1)F=30°;(2)見解析;(3)當(dāng)x= 時,最大值=9.

          【解析】分析:

          (1)如圖,連接OE,由OD∥OE可得∠DOE=∠OEB,由點E的中點可得∠DOE=∠BOE,由OB=OE可得∠OBE=∠OEB,由此可得∠OBE=∠OEB=∠BOE=60°,結(jié)合CF⊥AB即可得到∠F=30°;

          (2)過點OOM⊥BE于點M,由此可得BE=2BM,再證△OBM≌△DOC可得BM=OC,這樣即可得到結(jié)論BE=2OC;

          (3)OD∥BF可得△COD∽△CBF,由此可得,由AB=4,AC=x結(jié)合(2)中結(jié)論可得OD=OB=BE=2,BC=4-x,OC=2-x,BE=2OC=4-2x,由此即可解得BF=,從而可得EF=BF-BE=,這樣即可把BEEF用含x的代數(shù)式表達(dá)出來,化簡配方即可求得所求答案了.

          詳解

          (1)如圖1,連接OE.

          ,

          ∴∠BOE=∠EOD,

          ∵OD∥BF,

          ∴∠DOE=∠BEO,

          ∵OB=OE,

          ∴∠OBE=∠OEB,

          ∴∠OBE=∠OEB=∠BOE=60°,

          ∵CF⊥AB,

          ∴∠FCB=90°,

          ∴∠F=30°;

          (2)如圖1,OOM⊥BEM,

          ∵OB=OE,

          ∴BE=2BM,

          ∵OD∥BF,

          ∴∠COD=∠B,

          △OBM△DOC ,

          ∴△OBM≌△DOC,

          ∴BM=OC,

          ∴BE=2OC;

          (3)∵OD∥BF,

          ∴△COD∽△CBF,

          ∵AC=x,AB=4,

          ∴OA=OB=OD=2,

          ∴OC=2﹣x,BE=2OC=4﹣2x,

          ,

          ∴BF=,

          ∴EF=BF﹣BE=,

          ∴BEEF=,

          當(dāng)時,最大值=9.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】趙老師是一名健步走運(yùn)動的愛好者為備戰(zhàn)2019中國地馬拉松系列賽·廣元站10千米群眾健身賽,她用手機(jī)軟件記錄了某個月(30天)每天健步走的步數(shù)(單位:萬步),將記錄結(jié)果繪制成了如圖所示的統(tǒng)計圖在每天健步走的步數(shù)這組數(shù)據(jù)中,眾數(shù)和中位數(shù)分別是(

          A. 2.22.3B. 2.4,2.3C. 2.4,2.35D. 2.32.3

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,以正方形ABCD的邊BC為直徑作半圓O,過點D作直線與半圓相切于點F,交AB于點E,若AB=2cm,則陰影部分的面積為_____

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在平行四邊形ABCDEBC邊上一點,且AB=AE,AE,DC的延長線相交于點F.

          (1)若∠F=62°,求∠D的度數(shù);

          (2)BE=3EC,且EFC的面積為1,求平行四邊形ABCD的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知中,,,直線經(jīng)過點,分別過點,作直線的垂線,垂足分別為點,若,,則線段的長為__________

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】用黑白兩種顏色的正六邊形地磚按如下所示的規(guī)律拼成若干個圖案:第(4)個圖案中有黑色地磚4塊;那么第(n)個圖案中有白色地磚________

          1 2 3

          A.nB.6nC.D.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知點C在直線AB上,,,點MN分別是AC,BC的中點,畫出線段示意圖并求線段MN的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在中,點是對角線的中點,點上,且,連接并延長交于點F.過點的垂線,垂足為,交于點

          1)求證:

          2)若

          ①求證:;

          ②探索的數(shù)量關(guān)系,并說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】有理數(shù)a,b,c在數(shù)軸上的位置如圖所示,且表示數(shù)a的點、數(shù)b的點與原點的距離相等.

          (1)用“>”“<”或“=”填空:b______0,a+b______0,a-c______0,b-c______0;

          (2)|b-1|+|a-1|=________;

          (3)化簡:|a+b|+|a-c|-|b|+|b-c|.

          查看答案和解析>>

          同步練習(xí)冊答案