日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖1,△ABC,∠ACB=2∠B,∠BAC的平分線AOBC于點D,HAO上一動點,過點H作直線l⊥AOH,分別交直線AB、AC、BC、于點N、E、M.

          (1)當直線l經(jīng)過點C時(如圖2),求證:BN=CD;

          (2)當MBC中點時寫出CECD之間的等量關系,并加以證明

          (3)請直接寫出BN、CE、CD之間的等量關系

          【答案】(1)證明見解析;(2)CD=2CE;(3)當點M 在線段BC 上時,CD=BN+CE ; 當點M BC 的延長線上時,CD=BN-CE ; 當點M CB 的延長線上時,CD=CE-BN.

          【解析】試題分析:(1)連接ND,先由已知條件證明:DN=DC,再證明BN=DN即可;

          (2)當MBC中點時,CECD之間的等量關系為CD=2CE,過點CCN'AOABN'.過點CCGAB交直線lG,再證明BNM≌△CGM問題得證;

          (3)BN、CE、CD之間的等量關系要分三種情況討論:①當點M在線段BC上時;②當點MBC的延長線上時;③當點MCB的延長線上時.

          試題解析:(1 )證明:連接ND ,

          AO 平分∠BAC , ∴∠1= 2 ,

          ∵直線l AO H , ∴∠4= 5=90 °, ∴∠6= 7 , AN=AC ,

          NH=CH , AH 是線段NC 的中垂線,∴DN=DC ,∴∠8= 9 ,∴∠AND= ACB ,

          ∵∠AND= B+ 3 ,ACB=2 B , ∴∠B= 3 , BN=DN , BN=DC ;

          (2 )如圖,當M BC 中點時,CE CD 之間的等量關系為CD=2CE.

          證明:過點C CN' AO AB N' ,

          由(1 )可得BN'=CD ,AN'=AC ,AN=AE ,∴∠4= 3 ,NN'=CE ,

          過點C CG AB 交直線l G ,∴∠4= 2 ,B= 1 ,∴∠2= 3 ,CG=CE ,

          M BC 中點, ,BM=CM ,

          ∴在BNM CGM 中,△BNM ≌△CGM , BN=CG ,BN=CE ,

          CD=BN'=NN'+BN=2CE ;

          (3 )BN 、CE 、CD 之間的等量關系:

          當點M 在線段BC 上時,CD=BN+CE ;

          當點M BC 的延長線上時,CD=BN-CE ;

          當點M CB 的延長線上時,CD=CE-BN.

          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,已知AB是O的直徑,弦EDAB于點F,點C是劣弧AD上的動點(不與點A、D重合),連接BC交ED于點G.過點C作O的切線與ED的延長線交于點P.

          (1)求證:PC=PG;

          (2)當點G是BC的中點時,求證:;

          (3)已知O的半徑為5,在滿足(2)的條件時,點O到BC的距離為,求此時CGP的面積.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】五邊形的5個內(nèi)角的度數(shù)之比為23456,則最大內(nèi)角的外角度數(shù)是________.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】下面的計算正確的是( 。

          A. 6a﹣5a=1 B. ﹣(ab)=﹣a+b

          C. a+2a2=3a3 D. 2(a+b)=2a+b

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,在ABC中,∠ACB=90°,AC=BC,BECEE,ADCED.

          (1)求證:ADC≌△CEB.

          (2)AD=5cm,DE=3cm,求BE的長度.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】我們知道:任意一個有理數(shù)與無理數(shù)的和為無理數(shù),任意一個不為零的有理數(shù)與一個無理數(shù)的積為無理數(shù),而零與無理數(shù)的積為零.由此可得:如果ax+b=0,其中a、b為有理數(shù),x為無理數(shù),那么a=0且b=0.

          運用上述知識,解決下列問題:

          (1)如果a-2+b+3=0,其中a、b為有理數(shù),那么a= ,b=

          (2)如果2+a-1-b=5,其中a、b為有理數(shù),求a+2b的值.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】-a-(b-c)去括號應為(

          A. -a+b+c B. -a+b-c C. -a-b-c D. -a-b+c

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】李老師對她所教學生的學習興趣進行了一次抽樣調(diào)查,她把學生的學習興趣分為三個層次:很感興趣;較感興趣和不感興趣;并將調(diào)查結果繪制成了圖①和圖②的統(tǒng)計圖(不完整).請你根據(jù)圖中提供的信息,幫助李老師解答下列問題:

          (1)此次抽樣調(diào)查中,共調(diào)查了 名學生;

          (2)補全條形統(tǒng)計圖,并在扇形統(tǒng)計圖中填上百分數(shù);

          (3)求圖②中表示“不感興趣”部分的扇形所對的圓心角;

          (4)根據(jù)抽樣調(diào)查的結果,請你估計李老師所在的學校800名學生中大約有多少名學生對學習感興趣(包括“很感興趣”和“較感興趣”).

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】將拋物線yx2向左平移2個單位,再向下平移5個單位,則平移后所得新拋物線的表達式為_____

          查看答案和解析>>

          同步練習冊答案