日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,頂點(diǎn)坐標(biāo)為(2,-1)的拋物線y=ax2+bx+c(a≠0)與y軸交于點(diǎn)C(0,3),與x軸交于A、B兩點(diǎn).
          (1)求拋物線的表達(dá)式;
          (2)點(diǎn)E為直線BC上一動點(diǎn),過點(diǎn)E作y軸的平行線EF,與拋物線交于點(diǎn)F.問是否存在點(diǎn)E,使得以D、E、F為頂點(diǎn)的三角形與△BCO相似?若存在,求點(diǎn)E的坐標(biāo);若不存在,請說明理由.

          【答案】分析:(1)設(shè)拋物線的表達(dá)式為y=a(x-2)2-1(a≠0),將點(diǎn)C的坐標(biāo)代入即可得出答案;
          (2)由直線BC的解析式知,∠OBC=∠OCB=45°.又由題意知∠EFD=∠COB=90°,所以只有△EFD∽△COB.
          解答:解:(1)∵拋物線的頂點(diǎn)為(2,-1),
          ∴可設(shè)該函數(shù)解析式為:y=a(x-2)2-1(a≠0),
          又∵拋物線y=ax2+bx+c(a≠0)與y軸交于點(diǎn)C(0,3),
          ∴3=a(0-2)2-1,
          解得a=1,
          ∴該拋物線的解析式是y=(x-2)2-1(或y=x2-4x+3);

          (2)假設(shè)存在點(diǎn)E,使得以D、E、F為頂點(diǎn)的三角形與△BCO相似.
          由(1)知,該拋物線的解析式是y=x2-4x+3,即y=(x-1)(x-3),
          ∴該拋物線與x軸的交點(diǎn)坐標(biāo)分別是A(1,0),B(3,0).
          ∵C(0,3),
          ∴易求直線BC的解析式為:y=-x+3.
          ∴∠OBC=∠OCB=45°.
          又∵點(diǎn)D是對稱軸上的一點(diǎn),
          ∴D(2,1).
          如圖,連接DF.
          ∵EF∥y軸,
          ∴只有∠EFD=∠COB=90°.
          ∵以D、E、F為頂點(diǎn)的三角形與△BCO相似,
          ∴∠DEF=∠FDE=45°,
          ∴只有△EFD∽△COB.
          設(shè)E(x,-x+3),則F(x,1),
          ∴1=x2-4x+3,
          解得x=2±,
          ∠EDF=90°;易知,直線AD:y=x-1,聯(lián)立拋物線的解析式有:
          x2-4x+3=x-1,解得 x1=1、x2=4;
          當(dāng)x=1時,y=-x+3=2;
          當(dāng)x=4時,y=-x+3=-1;
          ∴E3(1,2)、E4(4,-1).
          ∴E(2-,1+)或E′(2+,1-)或(1,2)或(4,-1).
          點(diǎn)評:本題考查了二次函數(shù)綜合題.解題時,利用了待定系數(shù)法求二次函數(shù)的解析式.注意解答(2)時,只有△EFD∽△COB一種情況.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,頂點(diǎn)坐標(biāo)為(1,9)的拋物線交x軸于點(diǎn)A(-2,0)、B兩點(diǎn),交y軸于點(diǎn)C,過A、B、C三點(diǎn)的精英家教網(wǎng)⊙O′交y軸于另一點(diǎn)D,交拋物線于另一點(diǎn)P,過原點(diǎn)O且垂直于AD的直線交AD于點(diǎn)H,交BC于點(diǎn)G.
          (1)求拋物線的解析式和點(diǎn)G的坐標(biāo);
          (2)設(shè)直線x=m交拋物線于點(diǎn)E,交直線OG于點(diǎn)F,是否存在實(shí)數(shù)m,使G、P、E、F為一個平行四邊形的四個頂點(diǎn)?如果存在,求出m的所有值;如果不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2012•萊蕪)如圖,頂點(diǎn)坐標(biāo)為(2,-1)的拋物線y=ax2+bx+c(a≠0)與y軸交于點(diǎn)C(0,3),與x軸交于A、B兩點(diǎn).
          (1)求拋物線的表達(dá)式;
          (2)設(shè)拋物線的對稱軸與直線BC交于點(diǎn)D,連接AC、AD,求△ACD的面積;
          (3)點(diǎn)E為直線BC上一動點(diǎn),過點(diǎn)E作y軸的平行線EF,與拋物線交于點(diǎn)F.問是否存在點(diǎn)E,使得以D、E、F為頂點(diǎn)的三角形與△BCO相似?若存在,求點(diǎn)E的坐標(biāo);若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,頂點(diǎn)坐標(biāo)為(2,-1)的拋物線y=ax2+bx+c(a≠0)與y軸交于點(diǎn)C(0,3),與x軸交于A、B兩點(diǎn).
          (1)求拋物線的表達(dá)式;
          (2)點(diǎn)E為直線BC上一動點(diǎn),過點(diǎn)E作y軸的平行線EF,與拋物線交于點(diǎn)F.問是否存在點(diǎn)E,使得以D、E、F為頂點(diǎn)的三角形與△BCO相似?若存在,求點(diǎn)E的坐標(biāo);若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2013年河南省鄭州外國語學(xué)學(xué)校中考數(shù)學(xué)預(yù)測試卷(二)(解析版) 題型:解答題

          如圖,頂點(diǎn)坐標(biāo)為(2,-1)的拋物線y=ax2+bx+c(a≠0)與y軸交于點(diǎn)C(0,3),與x軸交于A、B兩點(diǎn).
          (1)求拋物線的表達(dá)式;
          (2)設(shè)拋物線的對稱軸與直線BC交于點(diǎn)D,連接AC、AD,求△ACD的面積;
          (3)點(diǎn)E為直線BC上一動點(diǎn),過點(diǎn)E作y軸的平行線EF,與拋物線交于點(diǎn)F.問是否存在點(diǎn)E,使得以D、E、F為頂點(diǎn)的三角形與△BCO相似?若存在,求點(diǎn)E的坐標(biāo);若不存在,請說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案