日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,在邊長為3的正方形ABCD中,點E是BC邊上的點,BE=1,∠AEP=90°,且EP交正方形外角的平分線CP于點P,交邊CD于點F,

          (1)的值為   
          (2)求證:AE=EP;
          (3)在AB邊上是否存在點M,使得四邊形DMEP是平行四邊形?若存在,請給予證明;若不存在,請說明理由.
          解:(1)∵四邊形ABCD是正方形,∴∠B=∠D。
          ∵∠AEP=90°,∴∠BAE=∠FEC。
          在Rt△ABE中,AB=3,BE=1,∴

          (2)證明:在BA邊上截取BG=BE,連接GE,

          ∵∠B=90°,BG=BE,∴∠BGE=45°。∴∠AGE=135°。
          ∵CP平分外角,∴∠DCP=45°!唷螮CP=135°。
          ∴∠AGE=∠ECP。
          ∵AB=CB,BG=BE,
          ∴AB﹣BG=BC﹣BE,即:AG=CE。
          又∠GAE=∠CEP,
          ∵在△AGE和△ECP中,∠AGE=∠ECP,AG=CE,∠GAE=∠CEP,
          ∴△AGE≌△ECP(ASA)。
          ∴AE=EP。
          (3)存在。證明如下:
          如圖,作DM⊥AE于AB交于點M,則有:DM∥EP,

          連接ME、DP,
          ∵在△ADM與△BAE中,
          AD=BA,∠ADM=∠BAE,∠DAM=∠ABE,
          ∴△ADM≌△BAE(AAS)!郙D=AE。
          ∵由(2)AE=EP,∴MD=EP。∴MDEP。
          ∴四邊形DMEP為平行四邊形。

          試題分析:(1)由正方形的性質(zhì)可得:∠B=∠C=90°,由同角的余角相等,可證得:∠BAE=∠CEF,根據(jù)同角的正弦值相等即可解答:
          (2)在BA邊上截取BG=BE,連接GE,根據(jù)角角之間的關(guān)系得到∠AGE=∠ECP,由AB=CB,BG=BE,得AG=EC,結(jié)合∠GAE=∠CEP,證明△AKE≌△ECP,于是結(jié)論得出。
          (3)作DM⊥AE于AB交于點M,連接ME、DP,易得出DM∥EP,由已知條件證明△ADM≌△BAE,進而證明MD=EP,四邊形DMEP是平行四邊形即可證出!
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,點O是菱形ABCD對角線的交點,DE∥AC,CE∥BD,連接OE.
          求證:OE=BC.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

          如圖,正方形ABCD的邊長為4,將一個足夠大的直角三角板的直角頂點放于點A處,該三角形板的兩條直角邊與CD交于點F,與CB延長線交于點E,四邊形AECF的面積是(       ).
          A.16B.12C.8D.4

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

          如圖,在平行四邊形ABCD中,AB=4,∠BAD的平分線與BC的延長線交于點E,與DC交于點F,且點F為邊DC的中點,DG⊥AE,垂足為G,若DG=1,則AE的邊長為
          A.B.C.4D.8

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          已知:在矩形ABCD中,E為邊BC上的一點,AE⊥DE,AB=12,BE=16,F(xiàn)為線段BE上一點,EF=7,連接AF。如圖1,現(xiàn)有一張硬紙片△GMN,∠NGM=900,NG=6,MG=8,斜邊MN與邊BC在同一直線上,點N與點E重合,點G在線段DE上。如圖2,△GMN從圖1的位置出發(fā),以每秒1個單位的速度沿EB向點B勻速移動,同時,點P從A點出發(fā),以每秒1個單位的速度沿AD向點D勻速移動,點Q為直線GN與線段AE的交點,連接PQ。當(dāng)點N到達(dá)終點B時,△GMNP和點同時停止運動。設(shè)運動時間為t秒,解答問題:

          (1)在整個運動過程中,當(dāng)點G在線段AE上時,求t的值;
          (2)在整個運動過程中,是否存在點P,使△APQ是等腰三角形,若存在,求出t的值;若不存在,說明理由;
          (3)在整個運動過程中,設(shè)△GMN與△AEF重疊部分的面積為S,請直接寫出S與t的函數(shù)關(guān)系式以及自變量t的取值范圍。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

          如圖,四邊形ABCD的對角線AC、BD相交于點O,且BD平分AC,若BD=8,AC=6,∠BOC=120°,則四邊形ABCD的面積為       .(結(jié)果保留根號)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,點E,F(xiàn)分別是銳角∠A兩邊上的點,AE=AF,分別以點E,F(xiàn)為圓心,以AE的長為半徑畫弧,兩弧相交于點D,連接DE,DF.

          (1)請你判斷所畫四邊形的性狀,并說明理由;
          (2)連接EF,若AE=8厘米,∠A=60°,求線段EF的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

          下列命題中,正確的是【   】
          A.平行四邊形的對角線相等B.矩形的對角線互相垂直
          C.菱形的對角線互相垂直且平分D.梯形的對角線相等

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,在正方形ABCD中,點M是對角線BD上的一點,過點M作ME∥CD交BC于點E,作MF∥BC交CD于點F.求證:AM=EF.

          查看答案和解析>>

          同步練習(xí)冊答案