日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖所示,一圓弧過方格的格點A,B,C,在方格中建立平面直角坐標系,使點A的坐標為(-2,4).

          (1) 用直尺畫出該圓弧所在圓的圓心M的位置,并寫出點M的坐標;

          (2)判斷點D與⊙M的位置關系,并說明理由.

          【答案】(1) (-1,1);(2) 見解析.

          【解析】

          (1)由點A的坐標為(-2,4)可知,x軸在點A的下方4個單位處,y軸在點A的右邊2個單位長度處,由此建立其坐標系,然后連接AB、AC,分別畫出線段ABAC的垂直平分線,兩條垂直平分線的交點就是所求的點M,然后寫出點M的坐標即可;

          (2)根據(jù)(1)中所得點M的坐標和已知的點A的坐標計算出圓M的半徑MA的長,結合點D的坐標和點M的坐標求出MD的長,比較MAMD的大小即可得出點D與圓M的位置關系.

          (1)建立的平面直角坐標系和圓心M的位置如下圖所示,

          由圖可得:圓心M的坐標為(-1,1) ;

          (2) 如下圖連接MA,

          ∵A的坐標為(-2,4),點M的坐標為(-1,1),

          M的半徑MB=,

          ∵點D的坐標為:(2,1),

          ∴MD=3,

          3<,

          D⊙M.

          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源: 題型:

          【題目】仔細想一想,完成下面的說理過程.

          如圖,已知ABCD,∠B=D

          求證:∠E=DFE

          證明:∵ABCD (已知 ),

          ∴∠B+ =180°( )

          又∵∠B=D(已知

          ∴∠D +BCD=180°( )

          ( )

          ∴∠E=DFE

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】我國古代偉大的數(shù)學家劉徽將勾股形(古人稱直角三角形為勾股形)分割成一個正方形和兩對全等的直角三角形,得到一個恒等式.后人借助這種分割方法所得的圖形證明了勾股定理,如圖所示的矩形由兩個這樣的圖形拼成,若a=3,b=4,則該矩形的面積為(

          A. 20 B. 24 C. D.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】溫州某企業(yè)安排65名工人生產(chǎn)甲、乙兩種產(chǎn)品,每人每天生產(chǎn)2件甲或1件乙,甲產(chǎn)品每件可獲利15元.根據(jù)市場需求和生產(chǎn)經(jīng)驗,乙產(chǎn)品每天產(chǎn)量不少于5件,當每天生產(chǎn)5件時,每件可獲利120元,每增加1件,當天平均每件獲利減少2元.設每天安排x人生產(chǎn)乙產(chǎn)品.

          (1)根據(jù)信息填表

          產(chǎn)品種類

          每天工人數(shù)(人)

          每天產(chǎn)量(件)

          每件產(chǎn)品可獲利潤(元)

          15

          (2)若每天生產(chǎn)甲產(chǎn)品可獲得的利潤比生產(chǎn)乙產(chǎn)品可獲得的利潤多550元,求每件乙產(chǎn)品可獲得的利潤.

          (3)該企業(yè)在不增加工人的情況下,增加生產(chǎn)丙產(chǎn)品,要求每天甲、丙兩種產(chǎn)品的產(chǎn)量相等.已知每人每天可生產(chǎn)1件丙(每人每天只能生產(chǎn)一件產(chǎn)品),丙產(chǎn)品每件可獲利30元,求每天生產(chǎn)三種產(chǎn)品可獲得的總利潤W(元)的最大值及相應的x值.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,△ABC中,AD⊥BC于D,若BD=AD,F(xiàn)D=CD.

          (1)求證:∠FBD=∠CAD;

          (2)求證:BE⊥AC.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,在△ABC中,∠ACB=90°,ACBCM是邊AC的中點,CHBMH

          (1)求證:;

          (2)連結AH,求∠AHM的度數(shù).

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,EF、G、H分別為矩形ABCD的邊AB、BC、CD、DA的中點,連接AC、HE、EC,GAGF.已知AGGF,AC=,則AB的長為__________

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,等邊三角形的頂點A1,1)、B3,1),規(guī)定把等邊△ABC先沿x軸翻折,再向左平移1個單位為一次變換,如果這樣連續(xù)經(jīng)過2018次變換后,等邊△ABC的頂點C的坐標為_____

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,在長方形中,為平面直角坐標系的原點,點軸上,點軸上,點在第一象限內,點從原點出發(fā),以每秒個單位長度的速度沿著的路線移動(即沿著長方形的邊移動一周).

          1)分別求出,兩點的坐標;

          2)當點移動了秒時,求出點的坐標;

          3)在移動過程中,當三角形的面積是時,求滿足條件的點的坐標及相應的點移動的時間.

          查看答案和解析>>

          同步練習冊答案