日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=x+m (m為常數(shù))的圖像與x軸交于點(diǎn)A(-3,0),與y軸交于點(diǎn)C.以直線x=1為對稱軸的拋物線y=ax2+bx+c(a,b,c為常數(shù),且a≠0)經(jīng)過A、C兩點(diǎn),并與x軸的正半軸交于點(diǎn)B.

          (1)求m的值及拋物線的函數(shù)表達(dá)式;
          (2)若P是拋物線對稱軸上一動點(diǎn),△ACP周長最小時(shí),求出P的坐標(biāo);
          (3)是否存在拋物在線一動點(diǎn)Q,使得△ACQ是以AC為直角邊的直角三角形?若存在,求出點(diǎn)Q的橫坐標(biāo);若不存在,請說明理由;
          (4)在(2)的條件下過點(diǎn)P任意作一條與y軸不平行的直線交拋物線于M1(x1,y1),M2(x2,y2)兩點(diǎn),試問是否為定值,如果是,請直接寫出結(jié)果,如果不是請說明理由.

          (1),y=?x2+x+;(2)(1,3);(3)存在,5.2 ,7.2;(4)是.

          解析試題分析:(1)首先求得m的值和直線的解析式,根據(jù)拋物線對稱性得到B點(diǎn)坐標(biāo),根據(jù)A、B點(diǎn)坐標(biāo)利用交點(diǎn)式求得拋物線的解析式;
          (2)確定何時(shí)△ACP的周長最。幂S對稱的性質(zhì)和兩點(diǎn)之間線段最短的原理解決;確定P點(diǎn)坐標(biāo)P(1,3),從而直線M1M2的解析式可以表示為y=kx+3-k;
          (3)存在, 設(shè)Q(x,-x2+x+)①若C為直角頂點(diǎn), 則由△ACO相似于△CQE,得x=5.2,②若A為直角頂點(diǎn),則由△ACO相似于△AQE,得x=8.2從而求出Q點(diǎn)坐標(biāo).
          (4)利用兩點(diǎn)間的距離公式,分別求得線段M1M2、M1P和M2P的長度,相互比較即可得到結(jié)論:為定值.
          試題解析:(1)∵y=x+m經(jīng)過點(diǎn)(-3,0),
          ∴0=?+m,解得m=,
          ∴直線解析式為y=x+,C(0,).
          ∵拋物線y=ax2+bx+c對稱軸為x=1,且與x軸交于A(-3,0),∴另一交點(diǎn)為B(5,0),
          設(shè)拋物線解析式為y=a(x+3)(x-5),
          ∵拋物線經(jīng)過C(0,),
          =a•3(-5),解得a=?,
          ∴拋物線解析式為y=?x2+x+;
          (2)要使△ACP的周長最小,只需AP+CP最小即可.如圖2,

          連接BC交x=1于P點(diǎn),因?yàn)辄c(diǎn)A、B關(guān)于x=1對稱,根據(jù)軸對稱性質(zhì)以及兩點(diǎn)之間線段最短,可知此時(shí)AP+CP最。ˋP+CP最小值為線段BC的長度).
          ∵B(5,0),C(0,),
          ∴直線BC解析式為y=?x+
          ∵xP=1,∴yP=3,即P(1,3).
          (3) (3)存在  設(shè)Q(x, ?x2+x+)
          ①若C為直角頂點(diǎn), 則由△ACO相似于△CQE,得x=5.2
          ②若A為直角頂點(diǎn),則由△ACO相似于△AQE,得x=8.2
          ∴Q的橫坐標(biāo)為5.2 ,7.2
          (4)令經(jīng)過點(diǎn)P(1,3)的直線為y=kx+b,則k+b=3,即b=3-k,
          則直線的解析式是:y=kx+3-k,
          ∵y=kx+3-k,y=?x2+x+,
          聯(lián)立化簡得:x2+(4k-2)x-4k-3=0,
          ∴x1+x2=2-4k,x1x2=-4k-3.
          ∵y1=kx1+3-k,y2=kx2+3-k,∴y1-y2=k(x1-x2).
          根據(jù)兩點(diǎn)間距離公式得到:

          =4(1+k2).


          同理



          =4(1+k2).
          ∴M1P•M2P=M1M2,
          為定值.
          考點(diǎn): 二次函數(shù)綜合題.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          在氣候?qū)θ祟惿鎵毫θ遮吋哟蟮慕裉,發(fā)展低碳經(jīng)濟(jì),全面實(shí)現(xiàn)低碳生活成為人們的共識,某企業(yè)采用技術(shù)革新,節(jié)能減排,經(jīng)分析前5個(gè)月二氧化碳排放量y(噸)與月份x(月)之間的函數(shù)關(guān)系是y=-2x+50.
          (1)隨著二氧化碳排放量的減少,每排放一噸二氧化碳,企業(yè)相應(yīng)獲得的利潤也有所提高,且相應(yīng)獲得的利潤p(萬元)與月份x(月)的函數(shù)關(guān)系如圖所示,那么哪月份,該企業(yè)獲得的月利潤最大?最大月利潤是多少萬元?
          (2)受國家政策的鼓勵(lì),該企業(yè)決定從6月份起,每月二氧化碳排放量在上一個(gè)月的基礎(chǔ)上都下降a%,與此同時(shí),每排放一噸二氧化碳,企業(yè)相應(yīng)獲得的利潤在上一個(gè)月的基礎(chǔ)上都增加50%,要使今年6、7月份月利潤的總和是今年5月份月利潤的3倍,求a的值(精確到個(gè)位).
          (參考數(shù)據(jù):=7.14,=7.21,=7.28,=7.35)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          平面直角坐標(biāo)中,對稱軸平行于y軸的拋物線經(jīng)過原點(diǎn)O,其頂點(diǎn)坐標(biāo)為(3,);Rt△ABC的直角邊BC在x軸上,直角頂點(diǎn)C的坐標(biāo)為(,0),且BC=5,AC=3(如圖1).

          圖1                             圖2
          (1)求出該拋物線的解析式;
          (2)將Rt△ABC沿x軸向右平移,當(dāng)點(diǎn)A落在(1)中所求拋物線上時(shí)Rt△ABC停止移動.D(0,4)為y軸上一點(diǎn),設(shè)點(diǎn)B的橫坐標(biāo)為m,△DAB的面積為s.
          ①分別求出點(diǎn)B位于原點(diǎn)左側(cè)、右側(cè)(含原點(diǎn)O)時(shí),s與m之間的函數(shù)關(guān)系式,并寫出相應(yīng)自變量m的取值范圍(可在圖1、圖2中畫出探求);
          ②當(dāng)點(diǎn)B位于原點(diǎn)左側(cè)時(shí),是否存在實(shí)數(shù)m,使得△DAB為直角三角形?若存在,直接寫出m的值;若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          如圖,在平面直角坐標(biāo)系中,二次函數(shù)的圖象與x軸交于A、B兩點(diǎn), A點(diǎn)在原點(diǎn)的左側(cè),B點(diǎn)的坐標(biāo)為(,),與y軸交于C()點(diǎn),點(diǎn)P是直線BC下方的拋物線上一動點(diǎn).

          (1)求這個(gè)二次函數(shù)的表達(dá)式.
          (2)連結(jié)PO、PC,并把△POC沿CO翻折,得到四邊形POP’C,那么是否存在點(diǎn)P,使四邊形POP’C為菱形?若存在,請求出此時(shí)點(diǎn)P的坐標(biāo);若不存在,請說明理由.
          (3)當(dāng)點(diǎn)P運(yùn)動到什么位置時(shí),四邊形 ABPC的面積最大并求出此時(shí)P點(diǎn)的坐標(biāo)和四邊形ABPC的最大面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          如圖,拋物線經(jīng)過點(diǎn),且與軸交于點(diǎn)、點(diǎn),若

          (1)求此拋物線的解析式;
          (2)若拋物線的頂點(diǎn)為,點(diǎn)是線段上一動點(diǎn)(不與點(diǎn)重合),,射線與線段交于點(diǎn),當(dāng)△為等腰三角形時(shí),求點(diǎn)的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

           已知在平面直角坐標(biāo)系xoy中,二次函數(shù)y=-2x²+bx+c的圖像經(jīng)過點(diǎn)A(-3,0)和點(diǎn)B(0,6)。(1)求此二次函數(shù)的解析式;(2)將這個(gè)二次函數(shù)的圖像向右平移5個(gè)單位后的頂點(diǎn)設(shè)為C,直線BC與x軸相交于點(diǎn)D,求∠sin∠ABD;(3)在第(2)小題的條件下,連接OC,試探究直線AB與OC的位置關(guān)系,并且說明理由。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          如圖,在平面直角坐標(biāo)系xOy中,拋物線y=ax2+bx+3的頂點(diǎn)為M(2,﹣1),交x軸與A、B兩點(diǎn),交y軸于點(diǎn)C,其中點(diǎn)B的坐標(biāo)為(3,0).

          (1)求該拋物線的解析式;
          (2)設(shè)經(jīng)過點(diǎn)C的直線與該拋物線的另一個(gè)交點(diǎn)為D,且直線CD和直線CA關(guān)于直線CB對稱,求直線CD的解析式.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          在平面直角坐標(biāo)系中,拋物線過點(diǎn),且與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)),與y軸交于點(diǎn)C.點(diǎn)D的坐標(biāo)為,連接CA,CB,CD.

          (1)求證:
          (2)是第一象限內(nèi)拋物線上的一個(gè)動點(diǎn),連接DP交BC于點(diǎn)E.
          ①當(dāng)△BDE是等腰三角形時(shí),直接寫出點(diǎn)E的坐標(biāo);
          ②連接CP,當(dāng)△CDP的面積最大時(shí),求點(diǎn)E的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          如圖,二次函數(shù)的圖象與x軸交于點(diǎn)A(-3,0)和點(diǎn)B,以AB為邊在x軸上方作正方形ABCD,點(diǎn)P是x軸上一動點(diǎn),連接DP,過點(diǎn)P作DP的垂線與y軸交于點(diǎn)E.

          (1)請直接寫出點(diǎn)D的坐標(biāo):
          (2)當(dāng)點(diǎn)P在線段AO(點(diǎn)P不與A、O重合)上運(yùn)動至何處時(shí),線段OE的長有最大值,求出這個(gè)最大值;
          (3)是否存在這樣的點(diǎn)P,使△PED是等腰三角形?若存在,請求出點(diǎn)P的坐標(biāo)及此時(shí)△PED與正方形ABCD重疊部分的面積;若不存在,請說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案