日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖所示,已知四邊形OABC是菱形,∠O=60°,點(diǎn)M是邊OA的中點(diǎn),以點(diǎn)O為圓心,r為半徑作⊙O分別交OA,OC于點(diǎn)D,E,連接BM.若BM=,的長是.求證:直線BC與⊙O相切.
          證明見解析

          試題分析:過點(diǎn)O作OF⊥BC于F,過點(diǎn)B作BG⊥OA于G,則四邊形BGOF為矩形,OF=BG。設(shè)菱形OABC的邊長為2a,先在Rt△BMG中,利用勾股定理得出BG2+GM2=BM2,即(a)2+(2a)2=(2,求得a=1,得到OF=,再根據(jù)弧長公式求出r=,則圓心O到直線BC的距離等于圓的半徑r,從而判定直線BC與⊙O相切!
          證明:如圖,過點(diǎn)O作OF⊥BC于F,過點(diǎn)B作BG⊥OA于G,則四邊形BGOF為矩形,OF=BG.

          設(shè)菱形OABC的邊長為2a,則AM=OA=a.
          ∵菱形OABC中,AB∥OC,∠COA =60°,
          ∴∠BAG=∠COA=60°,∠ABG=90°﹣60°=30°。
          ∴AG=AB=a,BG=AG=a。
          在Rt△BMG中,
          ∵∠BGM=90°,BG=aGM=a+a=2a,BM=,
          ∴BG2+GM2=BM2,即(a)2+(2a)2=(2,解得a=1。∴OF=BG=。
          又∵的長=,∴r=
          ∴OF=r=,即圓心O到直線BC的距離等于圓的半徑r。
          ∴直線BC與⊙O相切。
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,直線分別與x、y軸交于點(diǎn)B、C,點(diǎn)A(﹣2,0),P是直線BC上的動點(diǎn).

          (1)求∠ABC的大;
          (2)求點(diǎn)P的坐標(biāo),使∠APO=30°;
          (3)在坐標(biāo)平面內(nèi),平移直線BC,試探索:當(dāng)BC在不同位置時,使∠APO=30°的點(diǎn)P的個數(shù)是否保持不變?若不變,指出點(diǎn)P的個數(shù)有幾個?若改變,指出點(diǎn)P的個數(shù)情況,并簡要說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

          (2013年四川自貢4分)如圖,點(diǎn)O是正六邊形的對稱中心,如果用一副三角板的角,借助點(diǎn)O(使該角的頂點(diǎn)落在點(diǎn)O處),把這個正六邊形的面積n等分,那么n的所有可能取值的個數(shù)是【   】
          A.4B.5C.6D.7

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,在△ABC中,∠BAC=90°,AB=AC,AB是⊙O的直徑,⊙O交BC于點(diǎn)D,DE⊥AC于點(diǎn)E,BE交⊙O于點(diǎn)F,連接AF,AF的延長線交DE于點(diǎn)P.

          (1)求證:DE是⊙O的切線;
          (2)求tan∠ABE的值;
          (3)若OA=2,求線段AP的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

          在圓中,30°的圓周角所對的弦的長度為,則這個圓的半徑是   

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

          如圖,AB是⊙O的弦,OC⊥AB于點(diǎn)C,連接OA、OB.點(diǎn)P是半徑OB上任意一點(diǎn),連接AP.若OA=5cm,OC=3cm,則AP的長度可能是   cm(寫出一個符合條件的數(shù)值即可)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

          如圖,AB是半圓O的直徑,點(diǎn)P在AB的延長線上,PC切半圓O于點(diǎn)C,連接AC.若∠CPA=20°,則∠A=   °.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

          如圖,在扇形OAB中,∠AOB=110°,半徑OA=18,將扇形OAB沿過點(diǎn)B的直線折疊,點(diǎn)O恰好落在上的點(diǎn)D處,折痕交OA于點(diǎn)C,則的長為       . 

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          若⊙O1和⊙O2的圓心距為4,兩圓半徑分別為r1、r2,且r1、r2是方程組的解,求r1、r2的值,并判斷兩圓的位置關(guān)系.

          查看答案和解析>>

          同步練習(xí)冊答案